MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoalem Structured version   Visualization version   GIF version

Theorem oeoalem 7563
Description: Lemma for oeoa 7564. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoalem.1 𝐴 ∈ On
oeoalem.2 ∅ ∈ 𝐴
oeoalem.3 𝐵 ∈ On
Assertion
Ref Expression
oeoalem (𝐶 ∈ On → (𝐴𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝐶)))

Proof of Theorem oeoalem
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . 4 (𝑥 = ∅ → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 ∅))
21oveq2d 6565 . . 3 (𝑥 = ∅ → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = (𝐴𝑜 (𝐵 +𝑜 ∅)))
3 oveq2 6557 . . . 4 (𝑥 = ∅ → (𝐴𝑜 𝑥) = (𝐴𝑜 ∅))
43oveq2d 6565 . . 3 (𝑥 = ∅ → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 ∅)))
52, 4eqeq12d 2625 . 2 (𝑥 = ∅ → ((𝐴𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) ↔ (𝐴𝑜 (𝐵 +𝑜 ∅)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 ∅))))
6 oveq2 6557 . . . 4 (𝑥 = 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝑦))
76oveq2d 6565 . . 3 (𝑥 = 𝑦 → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = (𝐴𝑜 (𝐵 +𝑜 𝑦)))
8 oveq2 6557 . . . 4 (𝑥 = 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝑦))
98oveq2d 6565 . . 3 (𝑥 = 𝑦 → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
107, 9eqeq12d 2625 . 2 (𝑥 = 𝑦 → ((𝐴𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) ↔ (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))))
11 oveq2 6557 . . . 4 (𝑥 = suc 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 suc 𝑦))
1211oveq2d 6565 . . 3 (𝑥 = suc 𝑦 → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)))
13 oveq2 6557 . . . 4 (𝑥 = suc 𝑦 → (𝐴𝑜 𝑥) = (𝐴𝑜 suc 𝑦))
1413oveq2d 6565 . . 3 (𝑥 = suc 𝑦 → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦)))
1512, 14eqeq12d 2625 . 2 (𝑥 = suc 𝑦 → ((𝐴𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) ↔ (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦))))
16 oveq2 6557 . . . 4 (𝑥 = 𝐶 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝐶))
1716oveq2d 6565 . . 3 (𝑥 = 𝐶 → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = (𝐴𝑜 (𝐵 +𝑜 𝐶)))
18 oveq2 6557 . . . 4 (𝑥 = 𝐶 → (𝐴𝑜 𝑥) = (𝐴𝑜 𝐶))
1918oveq2d 6565 . . 3 (𝑥 = 𝐶 → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝐶)))
2017, 19eqeq12d 2625 . 2 (𝑥 = 𝐶 → ((𝐴𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) ↔ (𝐴𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝐶))))
21 oeoalem.1 . . . . 5 𝐴 ∈ On
22 oeoalem.3 . . . . 5 𝐵 ∈ On
23 oecl 7504 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
2421, 22, 23mp2an 704 . . . 4 (𝐴𝑜 𝐵) ∈ On
25 om1 7509 . . . 4 ((𝐴𝑜 𝐵) ∈ On → ((𝐴𝑜 𝐵) ·𝑜 1𝑜) = (𝐴𝑜 𝐵))
2624, 25ax-mp 5 . . 3 ((𝐴𝑜 𝐵) ·𝑜 1𝑜) = (𝐴𝑜 𝐵)
27 oe0 7489 . . . . 5 (𝐴 ∈ On → (𝐴𝑜 ∅) = 1𝑜)
2821, 27ax-mp 5 . . . 4 (𝐴𝑜 ∅) = 1𝑜
2928oveq2i 6560 . . 3 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 ∅)) = ((𝐴𝑜 𝐵) ·𝑜 1𝑜)
30 oa0 7483 . . . . 5 (𝐵 ∈ On → (𝐵 +𝑜 ∅) = 𝐵)
3122, 30ax-mp 5 . . . 4 (𝐵 +𝑜 ∅) = 𝐵
3231oveq2i 6560 . . 3 (𝐴𝑜 (𝐵 +𝑜 ∅)) = (𝐴𝑜 𝐵)
3326, 29, 323eqtr4ri 2643 . 2 (𝐴𝑜 (𝐵 +𝑜 ∅)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 ∅))
34 oasuc 7491 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
3534oveq2d 6565 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = (𝐴𝑜 suc (𝐵 +𝑜 𝑦)))
36 oacl 7502 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 𝑦) ∈ On)
37 oesuc 7494 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 +𝑜 𝑦) ∈ On) → (𝐴𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 (𝐵 +𝑜 𝑦)) ·𝑜 𝐴))
3821, 36, 37sylancr 694 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 (𝐵 +𝑜 𝑦)) ·𝑜 𝐴))
3935, 38eqtrd 2644 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴𝑜 (𝐵 +𝑜 𝑦)) ·𝑜 𝐴))
4022, 39mpan 702 . . . . 5 (𝑦 ∈ On → (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴𝑜 (𝐵 +𝑜 𝑦)) ·𝑜 𝐴))
41 oveq1 6556 . . . . 5 ((𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) → ((𝐴𝑜 (𝐵 +𝑜 𝑦)) ·𝑜 𝐴) = (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴))
4240, 41sylan9eq 2664 . . . 4 ((𝑦 ∈ On ∧ (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))) → (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴))
43 oecl 7504 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ On)
44 omass 7547 . . . . . . . . 9 (((𝐴𝑜 𝐵) ∈ On ∧ (𝐴𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
4524, 21, 44mp3an13 1407 . . . . . . . 8 ((𝐴𝑜 𝑦) ∈ On → (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
4643, 45syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
47 oesuc 7494 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 suc 𝑦) = ((𝐴𝑜 𝑦) ·𝑜 𝐴))
4847oveq2d 6565 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 ((𝐴𝑜 𝑦) ·𝑜 𝐴)))
4946, 48eqtr4d 2647 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦)))
5021, 49mpan 702 . . . . 5 (𝑦 ∈ On → (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦)))
5150adantr 480 . . . 4 ((𝑦 ∈ On ∧ (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))) → (((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦)))
5242, 51eqtrd 2644 . . 3 ((𝑦 ∈ On ∧ (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))) → (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦)))
5352ex 449 . 2 (𝑦 ∈ On → ((𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) → (𝐴𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 suc 𝑦))))
54 vex 3176 . . . . . . . 8 𝑥 ∈ V
55 oalim 7499 . . . . . . . . 9 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +𝑜 𝑥) = 𝑦𝑥 (𝐵 +𝑜 𝑦))
5622, 55mpan 702 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐵 +𝑜 𝑥) = 𝑦𝑥 (𝐵 +𝑜 𝑦))
5754, 56mpan 702 . . . . . . 7 (Lim 𝑥 → (𝐵 +𝑜 𝑥) = 𝑦𝑥 (𝐵 +𝑜 𝑦))
5857oveq2d 6565 . . . . . 6 (Lim 𝑥 → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = (𝐴𝑜 𝑦𝑥 (𝐵 +𝑜 𝑦)))
5954a1i 11 . . . . . . 7 (Lim 𝑥𝑥 ∈ V)
60 limord 5701 . . . . . . . . . 10 (Lim 𝑥 → Ord 𝑥)
61 ordelon 5664 . . . . . . . . . 10 ((Ord 𝑥𝑦𝑥) → 𝑦 ∈ On)
6260, 61sylan 487 . . . . . . . . 9 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
6322, 62, 36sylancr 694 . . . . . . . 8 ((Lim 𝑥𝑦𝑥) → (𝐵 +𝑜 𝑦) ∈ On)
6463ralrimiva 2949 . . . . . . 7 (Lim 𝑥 → ∀𝑦𝑥 (𝐵 +𝑜 𝑦) ∈ On)
65 0ellim 5704 . . . . . . . 8 (Lim 𝑥 → ∅ ∈ 𝑥)
66 ne0i 3880 . . . . . . . 8 (∅ ∈ 𝑥𝑥 ≠ ∅)
6765, 66syl 17 . . . . . . 7 (Lim 𝑥𝑥 ≠ ∅)
68 vex 3176 . . . . . . . . 9 𝑤 ∈ V
69 oeoalem.2 . . . . . . . . . . 11 ∅ ∈ 𝐴
70 oelim 7501 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑤) = 𝑧𝑤 (𝐴𝑜 𝑧))
7169, 70mpan2 703 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴𝑜 𝑤) = 𝑧𝑤 (𝐴𝑜 𝑧))
7221, 71mpan 702 . . . . . . . . 9 ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴𝑜 𝑤) = 𝑧𝑤 (𝐴𝑜 𝑧))
7368, 72mpan 702 . . . . . . . 8 (Lim 𝑤 → (𝐴𝑜 𝑤) = 𝑧𝑤 (𝐴𝑜 𝑧))
74 oewordi 7558 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝑤 → (𝐴𝑜 𝑧) ⊆ (𝐴𝑜 𝑤)))
7569, 74mpan2 703 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧𝑤 → (𝐴𝑜 𝑧) ⊆ (𝐴𝑜 𝑤)))
7621, 75mp3an3 1405 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → (𝐴𝑜 𝑧) ⊆ (𝐴𝑜 𝑤)))
77763impia 1253 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → (𝐴𝑜 𝑧) ⊆ (𝐴𝑜 𝑤))
7873, 77onoviun 7327 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐵 +𝑜 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴𝑜 𝑦𝑥 (𝐵 +𝑜 𝑦)) = 𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)))
7959, 64, 67, 78syl3anc 1318 . . . . . 6 (Lim 𝑥 → (𝐴𝑜 𝑦𝑥 (𝐵 +𝑜 𝑦)) = 𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)))
8058, 79eqtrd 2644 . . . . 5 (Lim 𝑥 → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = 𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)))
81 iuneq2 4473 . . . . 5 (∀𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) → 𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)) = 𝑦𝑥 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
8280, 81sylan9eq 2664 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))) → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = 𝑦𝑥 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
83 oelim 7501 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
8469, 83mpan2 703 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
8521, 84mpan 702 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
8654, 85mpan 702 . . . . . . 7 (Lim 𝑥 → (𝐴𝑜 𝑥) = 𝑦𝑥 (𝐴𝑜 𝑦))
8786oveq2d 6565 . . . . . 6 (Lim 𝑥 → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 𝑦𝑥 (𝐴𝑜 𝑦)))
8821, 62, 43sylancr 694 . . . . . . . 8 ((Lim 𝑥𝑦𝑥) → (𝐴𝑜 𝑦) ∈ On)
8988ralrimiva 2949 . . . . . . 7 (Lim 𝑥 → ∀𝑦𝑥 (𝐴𝑜 𝑦) ∈ On)
90 omlim 7500 . . . . . . . . . 10 (((𝐴𝑜 𝐵) ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → ((𝐴𝑜 𝐵) ·𝑜 𝑤) = 𝑧𝑤 ((𝐴𝑜 𝐵) ·𝑜 𝑧))
9124, 90mpan 702 . . . . . . . . 9 ((𝑤 ∈ V ∧ Lim 𝑤) → ((𝐴𝑜 𝐵) ·𝑜 𝑤) = 𝑧𝑤 ((𝐴𝑜 𝐵) ·𝑜 𝑧))
9268, 91mpan 702 . . . . . . . 8 (Lim 𝑤 → ((𝐴𝑜 𝐵) ·𝑜 𝑤) = 𝑧𝑤 ((𝐴𝑜 𝐵) ·𝑜 𝑧))
93 omwordi 7538 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ (𝐴𝑜 𝐵) ∈ On) → (𝑧𝑤 → ((𝐴𝑜 𝐵) ·𝑜 𝑧) ⊆ ((𝐴𝑜 𝐵) ·𝑜 𝑤)))
9424, 93mp3an3 1405 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → ((𝐴𝑜 𝐵) ·𝑜 𝑧) ⊆ ((𝐴𝑜 𝐵) ·𝑜 𝑤)))
95943impia 1253 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → ((𝐴𝑜 𝐵) ·𝑜 𝑧) ⊆ ((𝐴𝑜 𝐵) ·𝑜 𝑤))
9692, 95onoviun 7327 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴𝑜 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → ((𝐴𝑜 𝐵) ·𝑜 𝑦𝑥 (𝐴𝑜 𝑦)) = 𝑦𝑥 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
9759, 89, 67, 96syl3anc 1318 . . . . . 6 (Lim 𝑥 → ((𝐴𝑜 𝐵) ·𝑜 𝑦𝑥 (𝐴𝑜 𝑦)) = 𝑦𝑥 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
9887, 97eqtrd 2644 . . . . 5 (Lim 𝑥 → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = 𝑦𝑥 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
9998adantr 480 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))) → ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)) = 𝑦𝑥 ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)))
10082, 99eqtr4d 2647 . . 3 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦))) → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥)))
101100ex 449 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝐴𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑦)) → (𝐴𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝑥))))
1025, 10, 15, 20, 33, 53, 101tfinds 6951 1 (𝐶 ∈ On → (𝐴𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴𝑜 𝐵) ·𝑜 (𝐴𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  wss 3540  c0 3874   ciun 4455  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642  (class class class)co 6549  1𝑜c1o 7440   +𝑜 coa 7444   ·𝑜 comu 7445  𝑜 coe 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453
This theorem is referenced by:  oeoa  7564
  Copyright terms: Public domain W3C validator