MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelimcl Structured version   Visualization version   GIF version

Theorem oelimcl 7567
Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oelimcl ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴𝑜 𝐵))

Proof of Theorem oelimcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 3694 . . . 4 (𝐴 ∈ (On ∖ 2𝑜) → 𝐴 ∈ On)
2 limelon 5705 . . . 4 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
3 oecl 7504 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
41, 2, 3syl2an 493 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴𝑜 𝐵) ∈ On)
5 eloni 5650 . . 3 ((𝐴𝑜 𝐵) ∈ On → Ord (𝐴𝑜 𝐵))
64, 5syl 17 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Ord (𝐴𝑜 𝐵))
71adantr 480 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → 𝐴 ∈ On)
82adantl 481 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → 𝐵 ∈ On)
9 dif20el 7472 . . . 4 (𝐴 ∈ (On ∖ 2𝑜) → ∅ ∈ 𝐴)
109adantr 480 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∅ ∈ 𝐴)
11 oen0 7553 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴𝑜 𝐵))
127, 8, 10, 11syl21anc 1317 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∅ ∈ (𝐴𝑜 𝐵))
13 oelim2 7562 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴𝑜 𝐵) = 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴𝑜 𝑦))
141, 13sylan 487 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴𝑜 𝐵) = 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴𝑜 𝑦))
1514eleq2d 2673 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴𝑜 𝐵) ↔ 𝑥 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴𝑜 𝑦)))
16 eliun 4460 . . . . 5 (𝑥 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴𝑜 𝑦) ↔ ∃𝑦 ∈ (𝐵 ∖ 1𝑜)𝑥 ∈ (𝐴𝑜 𝑦))
17 eldifi 3694 . . . . . . 7 (𝑦 ∈ (𝐵 ∖ 1𝑜) → 𝑦𝐵)
187adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝐴 ∈ On)
198adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝐵 ∈ On)
20 simprl 790 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝑦𝐵)
21 onelon 5665 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦𝐵) → 𝑦 ∈ On)
2219, 20, 21syl2anc 691 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝑦 ∈ On)
23 oecl 7504 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝑜 𝑦) ∈ On)
2418, 22, 23syl2anc 691 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → (𝐴𝑜 𝑦) ∈ On)
25 eloni 5650 . . . . . . . . . . 11 ((𝐴𝑜 𝑦) ∈ On → Ord (𝐴𝑜 𝑦))
2624, 25syl 17 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → Ord (𝐴𝑜 𝑦))
27 simprr 792 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝑥 ∈ (𝐴𝑜 𝑦))
28 ordsucss 6910 . . . . . . . . . 10 (Ord (𝐴𝑜 𝑦) → (𝑥 ∈ (𝐴𝑜 𝑦) → suc 𝑥 ⊆ (𝐴𝑜 𝑦)))
2926, 27, 28sylc 63 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → suc 𝑥 ⊆ (𝐴𝑜 𝑦))
30 simpll 786 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝐴 ∈ (On ∖ 2𝑜))
31 oeordi 7554 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2𝑜)) → (𝑦𝐵 → (𝐴𝑜 𝑦) ∈ (𝐴𝑜 𝐵)))
3219, 30, 31syl2anc 691 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → (𝑦𝐵 → (𝐴𝑜 𝑦) ∈ (𝐴𝑜 𝐵)))
3320, 32mpd 15 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → (𝐴𝑜 𝑦) ∈ (𝐴𝑜 𝐵))
34 onelon 5665 . . . . . . . . . . . 12 (((𝐴𝑜 𝑦) ∈ On ∧ 𝑥 ∈ (𝐴𝑜 𝑦)) → 𝑥 ∈ On)
3524, 27, 34syl2anc 691 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → 𝑥 ∈ On)
36 suceloni 6905 . . . . . . . . . . 11 (𝑥 ∈ On → suc 𝑥 ∈ On)
3735, 36syl 17 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → suc 𝑥 ∈ On)
384adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → (𝐴𝑜 𝐵) ∈ On)
39 ontr2 5689 . . . . . . . . . 10 ((suc 𝑥 ∈ On ∧ (𝐴𝑜 𝐵) ∈ On) → ((suc 𝑥 ⊆ (𝐴𝑜 𝑦) ∧ (𝐴𝑜 𝑦) ∈ (𝐴𝑜 𝐵)) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4037, 38, 39syl2anc 691 . . . . . . . . 9 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → ((suc 𝑥 ⊆ (𝐴𝑜 𝑦) ∧ (𝐴𝑜 𝑦) ∈ (𝐴𝑜 𝐵)) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4129, 33, 40mp2and 711 . . . . . . . 8 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ (𝑦𝐵𝑥 ∈ (𝐴𝑜 𝑦))) → suc 𝑥 ∈ (𝐴𝑜 𝐵))
4241expr 641 . . . . . . 7 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦𝐵) → (𝑥 ∈ (𝐴𝑜 𝑦) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4317, 42sylan2 490 . . . . . 6 (((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦 ∈ (𝐵 ∖ 1𝑜)) → (𝑥 ∈ (𝐴𝑜 𝑦) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4443rexlimdva 3013 . . . . 5 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (∃𝑦 ∈ (𝐵 ∖ 1𝑜)𝑥 ∈ (𝐴𝑜 𝑦) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4516, 44syl5bi 231 . . . 4 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 𝑦 ∈ (𝐵 ∖ 1𝑜)(𝐴𝑜 𝑦) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4615, 45sylbid 229 . . 3 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥 ∈ (𝐴𝑜 𝐵) → suc 𝑥 ∈ (𝐴𝑜 𝐵)))
4746ralrimiv 2948 . 2 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ∀𝑥 ∈ (𝐴𝑜 𝐵)suc 𝑥 ∈ (𝐴𝑜 𝐵))
48 dflim4 6940 . 2 (Lim (𝐴𝑜 𝐵) ↔ (Ord (𝐴𝑜 𝐵) ∧ ∅ ∈ (𝐴𝑜 𝐵) ∧ ∀𝑥 ∈ (𝐴𝑜 𝐵)suc 𝑥 ∈ (𝐴𝑜 𝐵)))
496, 12, 47, 48syl3anbrc 1239 1 ((𝐴 ∈ (On ∖ 2𝑜) ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cdif 3537  wss 3540  c0 3874   ciun 4455  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642  (class class class)co 6549  1𝑜c1o 7440  2𝑜c2o 7441  𝑜 coe 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453
This theorem is referenced by:  oaabs2  7612  omabs  7614
  Copyright terms: Public domain W3C validator