MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe1m Structured version   Visualization version   GIF version

Theorem oe1m 7512
Description: Ordinal exponentiation with a mantissa of 1. Proposition 8.31(3) of [TakeutiZaring] p. 67. (Contributed by NM, 2-Jan-2005.)
Assertion
Ref Expression
oe1m (𝐴 ∈ On → (1𝑜𝑜 𝐴) = 1𝑜)

Proof of Theorem oe1m
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . 3 (𝑥 = ∅ → (1𝑜𝑜 𝑥) = (1𝑜𝑜 ∅))
21eqeq1d 2612 . 2 (𝑥 = ∅ → ((1𝑜𝑜 𝑥) = 1𝑜 ↔ (1𝑜𝑜 ∅) = 1𝑜))
3 oveq2 6557 . . 3 (𝑥 = 𝑦 → (1𝑜𝑜 𝑥) = (1𝑜𝑜 𝑦))
43eqeq1d 2612 . 2 (𝑥 = 𝑦 → ((1𝑜𝑜 𝑥) = 1𝑜 ↔ (1𝑜𝑜 𝑦) = 1𝑜))
5 oveq2 6557 . . 3 (𝑥 = suc 𝑦 → (1𝑜𝑜 𝑥) = (1𝑜𝑜 suc 𝑦))
65eqeq1d 2612 . 2 (𝑥 = suc 𝑦 → ((1𝑜𝑜 𝑥) = 1𝑜 ↔ (1𝑜𝑜 suc 𝑦) = 1𝑜))
7 oveq2 6557 . . 3 (𝑥 = 𝐴 → (1𝑜𝑜 𝑥) = (1𝑜𝑜 𝐴))
87eqeq1d 2612 . 2 (𝑥 = 𝐴 → ((1𝑜𝑜 𝑥) = 1𝑜 ↔ (1𝑜𝑜 𝐴) = 1𝑜))
9 1on 7454 . . 3 1𝑜 ∈ On
10 oe0 7489 . . 3 (1𝑜 ∈ On → (1𝑜𝑜 ∅) = 1𝑜)
119, 10ax-mp 5 . 2 (1𝑜𝑜 ∅) = 1𝑜
12 oesuc 7494 . . . . 5 ((1𝑜 ∈ On ∧ 𝑦 ∈ On) → (1𝑜𝑜 suc 𝑦) = ((1𝑜𝑜 𝑦) ·𝑜 1𝑜))
139, 12mpan 702 . . . 4 (𝑦 ∈ On → (1𝑜𝑜 suc 𝑦) = ((1𝑜𝑜 𝑦) ·𝑜 1𝑜))
14 oveq1 6556 . . . . 5 ((1𝑜𝑜 𝑦) = 1𝑜 → ((1𝑜𝑜 𝑦) ·𝑜 1𝑜) = (1𝑜 ·𝑜 1𝑜))
15 om1 7509 . . . . . 6 (1𝑜 ∈ On → (1𝑜 ·𝑜 1𝑜) = 1𝑜)
169, 15ax-mp 5 . . . . 5 (1𝑜 ·𝑜 1𝑜) = 1𝑜
1714, 16syl6eq 2660 . . . 4 ((1𝑜𝑜 𝑦) = 1𝑜 → ((1𝑜𝑜 𝑦) ·𝑜 1𝑜) = 1𝑜)
1813, 17sylan9eq 2664 . . 3 ((𝑦 ∈ On ∧ (1𝑜𝑜 𝑦) = 1𝑜) → (1𝑜𝑜 suc 𝑦) = 1𝑜)
1918ex 449 . 2 (𝑦 ∈ On → ((1𝑜𝑜 𝑦) = 1𝑜 → (1𝑜𝑜 suc 𝑦) = 1𝑜))
20 iuneq2 4473 . . 3 (∀𝑦𝑥 (1𝑜𝑜 𝑦) = 1𝑜 𝑦𝑥 (1𝑜𝑜 𝑦) = 𝑦𝑥 1𝑜)
21 vex 3176 . . . . . 6 𝑥 ∈ V
22 0lt1o 7471 . . . . . . . 8 ∅ ∈ 1𝑜
23 oelim 7501 . . . . . . . 8 (((1𝑜 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 1𝑜) → (1𝑜𝑜 𝑥) = 𝑦𝑥 (1𝑜𝑜 𝑦))
2422, 23mpan2 703 . . . . . . 7 ((1𝑜 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (1𝑜𝑜 𝑥) = 𝑦𝑥 (1𝑜𝑜 𝑦))
259, 24mpan 702 . . . . . 6 ((𝑥 ∈ V ∧ Lim 𝑥) → (1𝑜𝑜 𝑥) = 𝑦𝑥 (1𝑜𝑜 𝑦))
2621, 25mpan 702 . . . . 5 (Lim 𝑥 → (1𝑜𝑜 𝑥) = 𝑦𝑥 (1𝑜𝑜 𝑦))
2726eqeq1d 2612 . . . 4 (Lim 𝑥 → ((1𝑜𝑜 𝑥) = 1𝑜 𝑦𝑥 (1𝑜𝑜 𝑦) = 1𝑜))
28 0ellim 5704 . . . . . 6 (Lim 𝑥 → ∅ ∈ 𝑥)
29 ne0i 3880 . . . . . 6 (∅ ∈ 𝑥𝑥 ≠ ∅)
30 iunconst 4465 . . . . . 6 (𝑥 ≠ ∅ → 𝑦𝑥 1𝑜 = 1𝑜)
3128, 29, 303syl 18 . . . . 5 (Lim 𝑥 𝑦𝑥 1𝑜 = 1𝑜)
3231eqeq2d 2620 . . . 4 (Lim 𝑥 → ( 𝑦𝑥 (1𝑜𝑜 𝑦) = 𝑦𝑥 1𝑜 𝑦𝑥 (1𝑜𝑜 𝑦) = 1𝑜))
3327, 32bitr4d 270 . . 3 (Lim 𝑥 → ((1𝑜𝑜 𝑥) = 1𝑜 𝑦𝑥 (1𝑜𝑜 𝑦) = 𝑦𝑥 1𝑜))
3420, 33syl5ibr 235 . 2 (Lim 𝑥 → (∀𝑦𝑥 (1𝑜𝑜 𝑦) = 1𝑜 → (1𝑜𝑜 𝑥) = 1𝑜))
352, 4, 6, 8, 11, 19, 34tfinds 6951 1 (𝐴 ∈ On → (1𝑜𝑜 𝐴) = 1𝑜)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  c0 3874   ciun 4455  Oncon0 5640  Lim wlim 5641  suc csuc 5642  (class class class)co 6549  1𝑜c1o 7440   ·𝑜 comu 7445  𝑜 coe 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-oexp 7453
This theorem is referenced by:  oewordi  7558  oeoe  7566  cantnflem2  8470
  Copyright terms: Public domain W3C validator