MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odd2np1 Structured version   Visualization version   GIF version

Theorem odd2np1 14903
Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem odd2np1
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 11286 . . . 4 2 ∈ ℤ
2 divides 14823 . . . 4 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
31, 2mpan 702 . . 3 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
43notbid 307 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
5 elznn0 11269 . . . . 5 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
6 odd2np1lem 14902 . . . . . . 7 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
76adantl 481 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8 odd2np1lem 14902 . . . . . . . 8 (-𝑁 ∈ ℕ0 → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁))
9 peano2z 11295 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℤ)
10 znegcl 11289 . . . . . . . . . . . . . 14 ((𝑥 + 1) ∈ ℤ → -(𝑥 + 1) ∈ ℤ)
119, 10syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -(𝑥 + 1) ∈ ℤ)
1211ad2antlr 759 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → -(𝑥 + 1) ∈ ℤ)
13 zcn 11259 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
14 2cn 10968 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
15 mulcl 9899 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
1614, 15mpan 702 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (2 · 𝑥) ∈ ℂ)
17 peano2cn 10087 . . . . . . . . . . . . . . . . . 18 ((2 · 𝑥) ∈ ℂ → ((2 · 𝑥) + 1) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((2 · 𝑥) + 1) ∈ ℂ)
1913, 18syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) ∈ ℂ)
2019adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((2 · 𝑥) + 1) ∈ ℂ)
21 simpl 472 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℝ)
2221recnd 9947 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℂ)
23 negcon2 10213 . . . . . . . . . . . . . . 15 ((((2 · 𝑥) + 1) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((2 · 𝑥) + 1) = -𝑁𝑁 = -((2 · 𝑥) + 1)))
2420, 22, 23syl2anc 691 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁𝑁 = -((2 · 𝑥) + 1)))
25 eqcom 2617 . . . . . . . . . . . . . . 15 (𝑁 = -((2 · 𝑥) + 1) ↔ -((2 · 𝑥) + 1) = 𝑁)
2614, 13, 15sylancr 694 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
27 ax-1cn 9873 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℂ
2814, 27mulcli 9924 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 1) ∈ ℂ
29 addsubass 10170 . . . . . . . . . . . . . . . . . . . . . . 23 (((2 · 𝑥) ∈ ℂ ∧ (2 · 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
3028, 27, 29mp3an23 1408 . . . . . . . . . . . . . . . . . . . . . 22 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
3126, 30syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℤ → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
32 2t1e2 11053 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 · 1) = 2
3332oveq1i 6559 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 · 1) − 1) = (2 − 1)
34 2m1e1 11012 . . . . . . . . . . . . . . . . . . . . . . 23 (2 − 1) = 1
3533, 34eqtri 2632 . . . . . . . . . . . . . . . . . . . . . 22 ((2 · 1) − 1) = 1
3635oveq2i 6560 . . . . . . . . . . . . . . . . . . . . 21 ((2 · 𝑥) + ((2 · 1) − 1)) = ((2 · 𝑥) + 1)
3731, 36syl6req 2661 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) = (((2 · 𝑥) + (2 · 1)) − 1))
38 adddi 9904 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
3914, 27, 38mp3an13 1407 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℂ → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
4013, 39syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℤ → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
4140oveq1d 6564 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → ((2 · (𝑥 + 1)) − 1) = (((2 · 𝑥) + (2 · 1)) − 1))
4237, 41eqtr4d 2647 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) = ((2 · (𝑥 + 1)) − 1))
4342negeqd 10154 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → -((2 · 𝑥) + 1) = -((2 · (𝑥 + 1)) − 1))
449zcnd 11359 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℂ)
45 mulneg2 10346 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℂ ∧ (𝑥 + 1) ∈ ℂ) → (2 · -(𝑥 + 1)) = -(2 · (𝑥 + 1)))
4614, 44, 45sylancr 694 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → (2 · -(𝑥 + 1)) = -(2 · (𝑥 + 1)))
4746oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → ((2 · -(𝑥 + 1)) + 1) = (-(2 · (𝑥 + 1)) + 1))
48 mulcl 9899 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℂ ∧ (𝑥 + 1) ∈ ℂ) → (2 · (𝑥 + 1)) ∈ ℂ)
4914, 44, 48sylancr 694 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → (2 · (𝑥 + 1)) ∈ ℂ)
50 negsubdi 10216 . . . . . . . . . . . . . . . . . . . 20 (((2 · (𝑥 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 · (𝑥 + 1)) − 1) = (-(2 · (𝑥 + 1)) + 1))
5149, 27, 50sylancl 693 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → -((2 · (𝑥 + 1)) − 1) = (-(2 · (𝑥 + 1)) + 1))
5247, 51eqtr4d 2647 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → ((2 · -(𝑥 + 1)) + 1) = -((2 · (𝑥 + 1)) − 1))
5343, 52eqtr4d 2647 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → -((2 · 𝑥) + 1) = ((2 · -(𝑥 + 1)) + 1))
5453adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → -((2 · 𝑥) + 1) = ((2 · -(𝑥 + 1)) + 1))
5554eqeq1d 2612 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-((2 · 𝑥) + 1) = 𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5625, 55syl5bb 271 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑁 = -((2 · 𝑥) + 1) ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5724, 56bitrd 267 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5857biimpa 500 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → ((2 · -(𝑥 + 1)) + 1) = 𝑁)
59 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑛 = -(𝑥 + 1) → (2 · 𝑛) = (2 · -(𝑥 + 1)))
6059oveq1d 6564 . . . . . . . . . . . . . 14 (𝑛 = -(𝑥 + 1) → ((2 · 𝑛) + 1) = ((2 · -(𝑥 + 1)) + 1))
6160eqeq1d 2612 . . . . . . . . . . . . 13 (𝑛 = -(𝑥 + 1) → (((2 · 𝑛) + 1) = 𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
6261rspcev 3282 . . . . . . . . . . . 12 ((-(𝑥 + 1) ∈ ℤ ∧ ((2 · -(𝑥 + 1)) + 1) = 𝑁) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
6312, 58, 62syl2anc 691 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
6463ex 449 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
6564rexlimdva 3013 . . . . . . . . 9 (𝑁 ∈ ℝ → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
66 znegcl 11289 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6766ad2antlr 759 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → -𝑦 ∈ ℤ)
68 zcn 11259 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
69 mulcl 9899 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑦 · 2) ∈ ℂ)
7068, 14, 69sylancl 693 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (𝑦 · 2) ∈ ℂ)
71 recn 9905 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
72 negcon2 10213 . . . . . . . . . . . . . . 15 (((𝑦 · 2) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑦 · 2) = -𝑁𝑁 = -(𝑦 · 2)))
7370, 71, 72syl2anr 494 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁𝑁 = -(𝑦 · 2)))
74 mulneg1 10345 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (-𝑦 · 2) = -(𝑦 · 2))
7568, 14, 74sylancl 693 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℤ → (-𝑦 · 2) = -(𝑦 · 2))
7675adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (-𝑦 · 2) = -(𝑦 · 2))
7776eqeq1d 2612 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((-𝑦 · 2) = 𝑁 ↔ -(𝑦 · 2) = 𝑁))
78 eqcom 2617 . . . . . . . . . . . . . . 15 (𝑁 = -(𝑦 · 2) ↔ -(𝑦 · 2) = 𝑁)
7977, 78syl6rbbr 278 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (𝑁 = -(𝑦 · 2) ↔ (-𝑦 · 2) = 𝑁))
8073, 79bitrd 267 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁 ↔ (-𝑦 · 2) = 𝑁))
8180biimpa 500 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → (-𝑦 · 2) = 𝑁)
82 oveq1 6556 . . . . . . . . . . . . . 14 (𝑘 = -𝑦 → (𝑘 · 2) = (-𝑦 · 2))
8382eqeq1d 2612 . . . . . . . . . . . . 13 (𝑘 = -𝑦 → ((𝑘 · 2) = 𝑁 ↔ (-𝑦 · 2) = 𝑁))
8483rspcev 3282 . . . . . . . . . . . 12 ((-𝑦 ∈ ℤ ∧ (-𝑦 · 2) = 𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
8567, 81, 84syl2anc 691 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
8685ex 449 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁 → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8786rexlimdva 3013 . . . . . . . . 9 (𝑁 ∈ ℝ → (∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁 → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8865, 87orim12d 879 . . . . . . . 8 (𝑁 ∈ ℝ → ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
898, 88syl5 33 . . . . . . 7 (𝑁 ∈ ℝ → (-𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
9089imp 444 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
917, 90jaodan 822 . . . . 5 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
925, 91sylbi 206 . . . 4 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
93 halfnz 11331 . . . . 5 ¬ (1 / 2) ∈ ℤ
94 reeanv 3086 . . . . . 6 (∃𝑛 ∈ ℤ ∃𝑘 ∈ ℤ (((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
95 eqtr3 2631 . . . . . . . 8 ((((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → ((2 · 𝑛) + 1) = (𝑘 · 2))
96 zcn 11259 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
97 mulcom 9901 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑘 · 2) = (2 · 𝑘))
9896, 14, 97sylancl 693 . . . . . . . . . . 11 (𝑘 ∈ ℤ → (𝑘 · 2) = (2 · 𝑘))
9998eqeq2d 2620 . . . . . . . . . 10 (𝑘 ∈ ℤ → (((2 · 𝑛) + 1) = (𝑘 · 2) ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
10099adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (𝑘 · 2) ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
101 mulcl 9899 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
10214, 96, 101sylancr 694 . . . . . . . . . . 11 (𝑘 ∈ ℤ → (2 · 𝑘) ∈ ℂ)
103 zcn 11259 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
104 mulcl 9899 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
10514, 103, 104sylancr 694 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
106 subadd 10163 . . . . . . . . . . . 12 (((2 · 𝑘) ∈ ℂ ∧ (2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
10727, 106mp3an3 1405 . . . . . . . . . . 11 (((2 · 𝑘) ∈ ℂ ∧ (2 · 𝑛) ∈ ℂ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
108102, 105, 107syl2anr 494 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
109 subcl 10159 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑘𝑛) ∈ ℂ)
110 2cnne0 11119 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 ≠ 0)
111 eqcom 2617 . . . . . . . . . . . . . . . . 17 ((𝑘𝑛) = (1 / 2) ↔ (1 / 2) = (𝑘𝑛))
112 divmul 10567 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((1 / 2) = (𝑘𝑛) ↔ (2 · (𝑘𝑛)) = 1))
113111, 112syl5bb 271 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
11427, 110, 113mp3an13 1407 . . . . . . . . . . . . . . 15 ((𝑘𝑛) ∈ ℂ → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
115109, 114syl 17 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
116115ancoms 468 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
117 subdi 10342 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
11814, 117mp3an1 1403 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
119118ancoms 468 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
120119eqeq1d 2612 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((2 · (𝑘𝑛)) = 1 ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
121116, 120bitrd 267 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
122103, 96, 121syl2an 493 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
123 zsubcl 11296 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑘𝑛) ∈ ℤ)
124 eleq1 2676 . . . . . . . . . . . . 13 ((𝑘𝑛) = (1 / 2) → ((𝑘𝑛) ∈ ℤ ↔ (1 / 2) ∈ ℤ))
125123, 124syl5ibcom 234 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) → (1 / 2) ∈ ℤ))
126125ancoms 468 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) → (1 / 2) ∈ ℤ))
127122, 126sylbird 249 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 → (1 / 2) ∈ ℤ))
128108, 127sylbird 249 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (2 · 𝑘) → (1 / 2) ∈ ℤ))
129100, 128sylbid 229 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (𝑘 · 2) → (1 / 2) ∈ ℤ))
13095, 129syl5 33 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ))
131130rexlimivv 3018 . . . . . 6 (∃𝑛 ∈ ℤ ∃𝑘 ∈ ℤ (((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ)
13294, 131sylbir 224 . . . . 5 ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ)
13393, 132mto 187 . . . 4 ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
13492, 133jctir 559 . . 3 (𝑁 ∈ ℤ → ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ∧ ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
135 pm5.17 928 . . . 4 (((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ∧ ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
136 bicom 211 . . . 4 ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ↔ (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
137135, 136bitri 263 . . 3 (((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ∧ ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) ↔ (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
138134, 137sylib 207 . 2 (𝑁 ∈ ℤ → (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
1394, 138bitrd 267 1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  0cn0 11169  cz 11254  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-dvds 14822
This theorem is referenced by:  oddm1even  14905  oexpneg  14907  mod2eq1n2dvds  14909  oddnn02np1  14910  2tp1odd  14914  sqoddm1div8z  14916  ltoddhalfle  14923  halfleoddlt  14924  opoe  14925  omoe  14926  opeo  14927  omeo  14928  m1expo  14930  m1exp1  14931  flodddiv4  14975  iserodd  15378  leibpilem1  24467  lgsquadlem1  24905  knoppndvlem9  31681  coskpi2  38749  cosknegpi  38752  stirlinglem5  38971  fourierswlem  39123  fmtnoodd  39983  dfodd3  40101
  Copyright terms: Public domain W3C validator