MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd2 Structured version   Visualization version   GIF version

Theorem odadd2 18075
Description: The order of a product in an abelian group is divisible by the LCM of the orders of the factors divided by the GCD. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd2 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))

Proof of Theorem odadd2
StepHypRef Expression
1 odadd1.2 . . . . . . . . 9 𝑋 = (Base‘𝐺)
2 odadd1.1 . . . . . . . . 9 𝑂 = (od‘𝐺)
31, 2odcl 17778 . . . . . . . 8 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
433ad2ant2 1076 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℕ0)
54nn0zd 11356 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℤ)
61, 2odcl 17778 . . . . . . . 8 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
763ad2ant3 1077 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℕ0)
87nn0zd 11356 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℤ)
95, 8zmulcld 11364 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
109adantr 480 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
11 dvds0 14835 . . . 4 (((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ → ((𝑂𝐴) · (𝑂𝐵)) ∥ 0)
1210, 11syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ 0)
13 simpr 476 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) gcd (𝑂𝐵)) = 0)
1413sq0id 12819 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = 0)
1514oveq2d 6565 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂‘(𝐴 + 𝐵)) · 0))
16 ablgrp 18021 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
17 odadd1.3 . . . . . . . . . . 11 + = (+g𝐺)
181, 17grpcl 17253 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
1916, 18syl3an1 1351 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
201, 2odcl 17778 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
2119, 20syl 17 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
2221nn0zd 11356 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
2322adantr 480 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
2423zcnd 11359 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℂ)
2524mul01d 10114 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · 0) = 0)
2615, 25eqtrd 2644 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = 0)
2712, 26breqtrrd 4611 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
285adantr 480 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℤ)
298adantr 480 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℤ)
3028, 29gcdcld 15068 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0)
3130nn0cnd 11230 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℂ)
3231sqvald 12867 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
3332oveq2d 6565 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵)))))
34 gcddvds 15063 . . . . . . . . 9 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3528, 29, 34syl2anc 691 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3635simpld 474 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴))
3730nn0zd 11356 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
38 simpr 476 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)
39 dvdsval2 14824 . . . . . . . 8 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐴) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4037, 38, 28, 39syl3anc 1318 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4136, 40mpbid 221 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
4241zcnd 11359 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℂ)
4335simprd 478 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵))
44 dvdsval2 14824 . . . . . . . 8 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4537, 38, 29, 44syl3anc 1318 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4643, 45mpbid 221 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
4746zcnd 11359 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℂ)
4842, 31, 47, 31mul4d 10127 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) · (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵)))))
4928zcnd 11359 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℂ)
5049, 31, 38divcan1d 10681 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂𝐴))
5129zcnd 11359 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℂ)
5251, 31, 38divcan1d 10681 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂𝐵))
5350, 52oveq12d 6567 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) · (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((𝑂𝐴) · (𝑂𝐵)))
5433, 48, 533eqtr2d 2650 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂𝐴) · (𝑂𝐵)))
5522adantr 480 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
56 dvdsmul2 14842 . . . . . . . . . 10 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
5755, 28, 56syl2anc 691 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
58 simpl1 1057 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Abel)
5955, 29zmulcld 11364 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ)
60 simpl2 1058 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐴𝑋)
61 simpl3 1059 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐵𝑋)
62 eqid 2610 . . . . . . . . . . . . . 14 (.g𝐺) = (.g𝐺)
631, 62, 17mulgdi 18055 . . . . . . . . . . . . 13 ((𝐺 ∈ Abel ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)))
6458, 59, 60, 61, 63syl13anc 1320 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)))
65 dvdsmul2 14842 . . . . . . . . . . . . . . 15 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
6655, 29, 65syl2anc 691 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
6758, 16syl 17 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Grp)
68 eqid 2610 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
691, 2, 62, 68oddvds 17789 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺)))
7067, 61, 59, 69syl3anc 1318 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺)))
7166, 70mpbid 221 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺))
7271oveq2d 6565 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)))
7364, 72eqtrd 2644 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)))
74 dvdsmul1 14841 . . . . . . . . . . . . 13 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
7555, 29, 74syl2anc 691 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
7619adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝐴 + 𝐵) ∈ 𝑋)
771, 2, 62, 68oddvds 17789 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
7867, 76, 59, 77syl3anc 1318 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
7975, 78mpbid 221 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
801, 62mulgcl 17382 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ ∧ 𝐴𝑋) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋)
8167, 59, 60, 80syl3anc 1318 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋)
821, 17, 68grprid 17276 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴))
8367, 81, 82syl2anc 691 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴))
8473, 79, 833eqtr3rd 2653 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺))
851, 2, 62, 68oddvds 17789 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺)))
8667, 60, 59, 85syl3anc 1318 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺)))
8784, 86mpbird 246 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
8855, 28zmulcld 11364 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ)
89 dvdsgcd 15099 . . . . . . . . . 10 (((𝑂𝐴) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
9028, 88, 59, 89syl3anc 1318 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
9157, 87, 90mp2and 711 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))))
9221adantr 480 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
93 mulgcd 15103 . . . . . . . . 9 (((𝑂‘(𝐴 + 𝐵)) ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9492, 28, 29, 93syl3anc 1318 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9591, 94breqtrd 4609 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9650, 95eqbrtrd 4605 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
97 dvdsmulcr 14849 . . . . . . 7 ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
9841, 55, 37, 38, 97syl112anc 1322 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
9996, 98mpbid 221 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)))
1001, 62, 17mulgdi 18055 . . . . . . . . . . . . 13 ((𝐺 ∈ Abel ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
10158, 88, 60, 61, 100syl13anc 1320 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
1021, 2, 62, 68oddvds 17789 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺)))
10367, 60, 88, 102syl3anc 1318 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺)))
10457, 103mpbid 221 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺))
105104oveq1d 6564 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
106101, 105eqtrd 2644 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
107 dvdsmul1 14841 . . . . . . . . . . . . 13 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
10855, 28, 107syl2anc 691 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
1091, 2, 62, 68oddvds 17789 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
11067, 76, 88, 109syl3anc 1318 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
111108, 110mpbid 221 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
1121, 62mulgcl 17382 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ 𝐵𝑋) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋)
11367, 88, 61, 112syl3anc 1318 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋)
1141, 17, 68grplid 17275 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋) → ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵))
11567, 113, 114syl2anc 691 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵))
116106, 111, 1153eqtr3rd 2653 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺))
1171, 2, 62, 68oddvds 17789 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺)))
11867, 61, 88, 117syl3anc 1318 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺)))
119116, 118mpbird 246 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
120 dvdsgcd 15099 . . . . . . . . . 10 (((𝑂𝐵) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
12129, 88, 59, 120syl3anc 1318 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
122119, 66, 121mp2and 711 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))))
123122, 94breqtrd 4609 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
12452, 123eqbrtrd 4605 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
125 dvdsmulcr 14849 . . . . . . 7 ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
12646, 55, 37, 38, 125syl112anc 1322 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
127124, 126mpbid 221 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)))
12841, 46gcdcld 15068 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℕ0)
129128nn0cnd 11230 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℂ)
130 1cnd 9935 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 1 ∈ ℂ)
13131mulid2d 9937 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (1 · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) gcd (𝑂𝐵)))
13250, 52oveq12d 6567 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((𝑂𝐴) gcd (𝑂𝐵)))
133 mulgcdr 15105 . . . . . . . . 9 ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))))
13441, 46, 30, 133syl3anc 1318 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))))
135131, 132, 1343eqtr2rd 2651 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (1 · ((𝑂𝐴) gcd (𝑂𝐵))))
136129, 130, 31, 38, 135mulcan2ad 10542 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) = 1)
137 coprmdvds2 15206 . . . . . 6 (((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ) ∧ (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) = 1) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)) ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵))))
13841, 46, 55, 136, 137syl31anc 1321 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)) ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵))))
13999, 127, 138mp2and 711 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)))
14041, 46zmulcld 11364 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℤ)
141 zsqcl 12796 . . . . . 6 (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ → (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ)
14237, 141syl 17 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ)
143 dvdsmulc 14847 . . . . 5 (((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2))))
144140, 55, 142, 143syl3anc 1318 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2))))
145139, 144mpd 15 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
14654, 145eqbrtrrd 4607 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
14727, 146pm2.61dane 2869 1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   · cmul 9820   / cdiv 10563  2c2 10947  0cn0 11169  cz 11254  cexp 12722  cdvds 14821   gcd cgcd 15054  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  .gcmg 17363  odcod 17767  Abelcabl 18017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-od 17771  df-cmn 18018  df-abl 18019
This theorem is referenced by:  odadd  18076
  Copyright terms: Public domain W3C validator