Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > occon | Structured version Visualization version GIF version |
Description: Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
occon | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 3629 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0)) | |
2 | 1 | ralrimivw 2950 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥 ∈ ℋ (∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0)) |
3 | ss2rab 3641 | . . . . 5 ⊢ ({𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0} ↔ ∀𝑥 ∈ ℋ (∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0)) | |
4 | 2, 3 | sylibr 223 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) |
5 | 4 | adantl 481 | . . 3 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) |
6 | ocval 27523 | . . . 4 ⊢ (𝐵 ⊆ ℋ → (⊥‘𝐵) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0}) | |
7 | 6 | ad2antlr 759 | . . 3 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐵 (𝑥 ·ih 𝑦) = 0}) |
8 | ocval 27523 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) | |
9 | 8 | ad2antrr 758 | . . 3 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦 ∈ 𝐴 (𝑥 ·ih 𝑦) = 0}) |
10 | 5, 7, 9 | 3sstr4d 3611 | . 2 ⊢ (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) ⊆ (⊥‘𝐴)) |
11 | 10 | ex 449 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ 𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∀wral 2896 {crab 2900 ⊆ wss 3540 ‘cfv 5804 (class class class)co 6549 0cc0 9815 ℋchil 27160 ·ih csp 27163 ⊥cort 27171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-hilex 27240 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-oc 27493 |
This theorem is referenced by: occon2 27531 occon3 27540 ococin 27651 ssjo 27690 chsscon3i 27704 shjshsi 27735 |
Copyright terms: Public domain | W3C validator |