HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occllem Structured version   Visualization version   GIF version

Theorem occllem 27546
Description: Lemma for occl 27547. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
occl.1 (𝜑𝐴 ⊆ ℋ)
occl.2 (𝜑𝐹 ∈ Cauchy)
occl.3 (𝜑𝐹:ℕ⟶(⊥‘𝐴))
occl.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
occllem (𝜑 → (( ⇝𝑣𝐹) ·ih 𝐵) = 0)

Proof of Theorem occllem
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldhaus 22398 . . 3 (TopOpen‘ℂfld) ∈ Haus
32a1i 11 . 2 (𝜑 → (TopOpen‘ℂfld) ∈ Haus)
4 occl.2 . . . . . . 7 (𝜑𝐹 ∈ Cauchy)
5 ax-hcompl 27443 . . . . . . 7 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
6 hlimf 27478 . . . . . . . . . 10 𝑣 :dom ⇝𝑣 ⟶ ℋ
7 ffn 5958 . . . . . . . . . 10 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 )
86, 7ax-mp 5 . . . . . . . . 9 𝑣 Fn dom ⇝𝑣
9 fnbr 5907 . . . . . . . . 9 (( ⇝𝑣 Fn dom ⇝𝑣𝐹𝑣 𝑥) → 𝐹 ∈ dom ⇝𝑣 )
108, 9mpan 702 . . . . . . . 8 (𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
1110rexlimivw 3011 . . . . . . 7 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
124, 5, 113syl 18 . . . . . 6 (𝜑𝐹 ∈ dom ⇝𝑣 )
13 ffun 5961 . . . . . . 7 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
14 funfvbrb 6238 . . . . . . 7 (Fun ⇝𝑣 → (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹)))
156, 13, 14mp2b 10 . . . . . 6 (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹))
1612, 15sylib 207 . . . . 5 (𝜑𝐹𝑣 ( ⇝𝑣𝐹))
17 eqid 2610 . . . . . . . 8 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
18 eqid 2610 . . . . . . . . 9 (norm ∘ − ) = (norm ∘ − )
1917, 18hhims 27413 . . . . . . . 8 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
20 eqid 2610 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
2117, 19, 20hhlm 27440 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ))
22 resss 5342 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2321, 22eqsstri 3598 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2423ssbri 4627 . . . . 5 (𝐹𝑣 ( ⇝𝑣𝐹) → 𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝐹))
2516, 24syl 17 . . . 4 (𝜑𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝐹))
2618hilxmet 27436 . . . . . 6 (norm ∘ − ) ∈ (∞Met‘ ℋ)
2720mopntopon 22054 . . . . . 6 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2826, 27mp1i 13 . . . . 5 (𝜑 → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2928cnmptid 21274 . . . . 5 (𝜑 → (𝑥 ∈ ℋ ↦ 𝑥) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
30 occl.1 . . . . . . 7 (𝜑𝐴 ⊆ ℋ)
31 occl.4 . . . . . . 7 (𝜑𝐵𝐴)
3230, 31sseldd 3569 . . . . . 6 (𝜑𝐵 ∈ ℋ)
3328, 28, 32cnmptc 21275 . . . . 5 (𝜑 → (𝑥 ∈ ℋ ↦ 𝐵) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3417hhnv 27406 . . . . . 6 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3517hhip 27418 . . . . . . 7 ·ih = (·𝑖OLD‘⟨⟨ + , · ⟩, norm⟩)
3635, 19, 20, 1dipcn 26959 . . . . . 6 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ·ih ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (TopOpen‘ℂfld)))
3734, 36mp1i 13 . . . . 5 (𝜑·ih ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (TopOpen‘ℂfld)))
3828, 29, 33, 37cnmpt12f 21279 . . . 4 (𝜑 → (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld)))
3925, 38lmcn 20919 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)(⇝𝑡‘(TopOpen‘ℂfld))((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)))
40 occl.3 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶(⊥‘𝐴))
4140ffvelrnda 6267 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (⊥‘𝐴))
42 ocel 27524 . . . . . . . . . . . 12 (𝐴 ⊆ ℋ → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4330, 42syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4541, 44mpbid 221 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0))
4645simpld 474 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℋ)
47 oveq1 6556 . . . . . . . . 9 (𝑥 = (𝐹𝑘) → (𝑥 ·ih 𝐵) = ((𝐹𝑘) ·ih 𝐵))
48 eqid 2610 . . . . . . . . 9 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))
49 ovex 6577 . . . . . . . . 9 ((𝐹𝑘) ·ih 𝐵) ∈ V
5047, 48, 49fvmpt 6191 . . . . . . . 8 ((𝐹𝑘) ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = ((𝐹𝑘) ·ih 𝐵))
5146, 50syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = ((𝐹𝑘) ·ih 𝐵))
5231adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐵𝐴)
5345simprd 478 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)
54 oveq2 6557 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝐹𝑘) ·ih 𝑥) = ((𝐹𝑘) ·ih 𝐵))
5554eqeq1d 2612 . . . . . . . . 9 (𝑥 = 𝐵 → (((𝐹𝑘) ·ih 𝑥) = 0 ↔ ((𝐹𝑘) ·ih 𝐵) = 0))
5655rspcv 3278 . . . . . . . 8 (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0 → ((𝐹𝑘) ·ih 𝐵) = 0))
5752, 53, 56sylc 63 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ·ih 𝐵) = 0)
5851, 57eqtrd 2644 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = 0)
59 ocss 27528 . . . . . . . . 9 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
6030, 59syl 17 . . . . . . . 8 (𝜑 → (⊥‘𝐴) ⊆ ℋ)
6140, 60fssd 5970 . . . . . . 7 (𝜑𝐹:ℕ⟶ ℋ)
62 fvco3 6185 . . . . . . 7 ((𝐹:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)))
6361, 62sylan 487 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)))
64 c0ex 9913 . . . . . . . 8 0 ∈ V
6564fvconst2 6374 . . . . . . 7 (𝑘 ∈ ℕ → ((ℕ × {0})‘𝑘) = 0)
6665adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((ℕ × {0})‘𝑘) = 0)
6758, 63, 663eqtr4d 2654 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘))
6867ralrimiva 2949 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘))
69 ovex 6577 . . . . . . 7 (𝑥 ·ih 𝐵) ∈ V
7069, 48fnmpti 5935 . . . . . 6 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) Fn ℋ
71 fnfco 5982 . . . . . 6 (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) Fn ℋ ∧ 𝐹:ℕ⟶ ℋ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ)
7270, 61, 71sylancr 694 . . . . 5 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ)
7364fconst 6004 . . . . . 6 (ℕ × {0}):ℕ⟶{0}
74 ffn 5958 . . . . . 6 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
7573, 74ax-mp 5 . . . . 5 (ℕ × {0}) Fn ℕ
76 eqfnfv 6219 . . . . 5 ((((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘)))
7772, 75, 76sylancl 693 . . . 4 (𝜑 → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘)))
7868, 77mpbird 246 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}))
79 fvex 6113 . . . . 5 ( ⇝𝑣𝐹) ∈ V
8079hlimveci 27431 . . . 4 (𝐹𝑣 ( ⇝𝑣𝐹) → ( ⇝𝑣𝐹) ∈ ℋ)
81 oveq1 6556 . . . . 5 (𝑥 = ( ⇝𝑣𝐹) → (𝑥 ·ih 𝐵) = (( ⇝𝑣𝐹) ·ih 𝐵))
82 ovex 6577 . . . . 5 (( ⇝𝑣𝐹) ·ih 𝐵) ∈ V
8381, 48, 82fvmpt 6191 . . . 4 (( ⇝𝑣𝐹) ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)) = (( ⇝𝑣𝐹) ·ih 𝐵))
8416, 80, 833syl 18 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)) = (( ⇝𝑣𝐹) ·ih 𝐵))
8539, 78, 843brtr3d 4614 . 2 (𝜑 → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))(( ⇝𝑣𝐹) ·ih 𝐵))
861cnfldtopon 22396 . . . 4 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
8786a1i 11 . . 3 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
88 0cnd 9912 . . 3 (𝜑 → 0 ∈ ℂ)
89 1zzd 11285 . . 3 (𝜑 → 1 ∈ ℤ)
90 nnuz 11599 . . . 4 ℕ = (ℤ‘1)
9190lmconst 20875 . . 3 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
9287, 88, 89, 91syl3anc 1318 . 2 (𝜑 → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
933, 85, 92lmmo 20994 1 (𝜑 → (( ⇝𝑣𝐹) ·ih 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540  {csn 4125  cop 4131   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  cres 5040  ccom 5042  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cc 9813  0cc0 9815  1c1 9816  cn 10897  cz 11254  TopOpenctopn 15905  ∞Metcxmt 19552  MetOpencmopn 19557  fldccnfld 19567  TopOnctopon 20518   Cn ccn 20838  𝑡clm 20840  Hauscha 20922   ×t ctx 21173  NrmCVeccnv 26823  chil 27160   + cva 27161   · csm 27162   ·ih csp 27163  normcno 27164   cmv 27166  Cauchyccau 27167  𝑣 chli 27168  cort 27171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326  ax-hcompl 27443
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-lm 20843  df-haus 20929  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-dip 26940  df-hnorm 27209  df-hvsub 27212  df-hlim 27213  df-sh 27448  df-oc 27493
This theorem is referenced by:  occl  27547
  Copyright terms: Public domain W3C validator