MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oancom Structured version   Visualization version   GIF version

Theorem oancom 8431
Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in [TakeutiZaring] p. 60. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
oancom (1𝑜 +𝑜 ω) ≠ (ω +𝑜 1𝑜)

Proof of Theorem oancom
StepHypRef Expression
1 omex 8423 . . . 4 ω ∈ V
21sucid 5721 . . 3 ω ∈ suc ω
3 omelon 8426 . . . 4 ω ∈ On
4 1onn 7606 . . . 4 1𝑜 ∈ ω
5 oaabslem 7610 . . . 4 ((ω ∈ On ∧ 1𝑜 ∈ ω) → (1𝑜 +𝑜 ω) = ω)
63, 4, 5mp2an 704 . . 3 (1𝑜 +𝑜 ω) = ω
7 oa1suc 7498 . . . 4 (ω ∈ On → (ω +𝑜 1𝑜) = suc ω)
83, 7ax-mp 5 . . 3 (ω +𝑜 1𝑜) = suc ω
92, 6, 83eltr4i 2701 . 2 (1𝑜 +𝑜 ω) ∈ (ω +𝑜 1𝑜)
10 1on 7454 . . . . 5 1𝑜 ∈ On
11 oacl 7502 . . . . 5 ((1𝑜 ∈ On ∧ ω ∈ On) → (1𝑜 +𝑜 ω) ∈ On)
1210, 3, 11mp2an 704 . . . 4 (1𝑜 +𝑜 ω) ∈ On
13 oacl 7502 . . . . 5 ((ω ∈ On ∧ 1𝑜 ∈ On) → (ω +𝑜 1𝑜) ∈ On)
143, 10, 13mp2an 704 . . . 4 (ω +𝑜 1𝑜) ∈ On
15 onelpss 5681 . . . 4 (((1𝑜 +𝑜 ω) ∈ On ∧ (ω +𝑜 1𝑜) ∈ On) → ((1𝑜 +𝑜 ω) ∈ (ω +𝑜 1𝑜) ↔ ((1𝑜 +𝑜 ω) ⊆ (ω +𝑜 1𝑜) ∧ (1𝑜 +𝑜 ω) ≠ (ω +𝑜 1𝑜))))
1612, 14, 15mp2an 704 . . 3 ((1𝑜 +𝑜 ω) ∈ (ω +𝑜 1𝑜) ↔ ((1𝑜 +𝑜 ω) ⊆ (ω +𝑜 1𝑜) ∧ (1𝑜 +𝑜 ω) ≠ (ω +𝑜 1𝑜)))
1716simprbi 479 . 2 ((1𝑜 +𝑜 ω) ∈ (ω +𝑜 1𝑜) → (1𝑜 +𝑜 ω) ≠ (ω +𝑜 1𝑜))
189, 17ax-mp 5 1 (1𝑜 +𝑜 ω) ≠ (ω +𝑜 1𝑜)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wss 3540  Oncon0 5640  suc csuc 5642  (class class class)co 6549  ωcom 6957  1𝑜c1o 7440   +𝑜 coa 7444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator