MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvop2 Structured version   Visualization version   GIF version

Theorem nvop2 26847
Description: A normed complex vector space is an ordered pair of a vector space and a norm operation. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvop2.1 𝑊 = (1st𝑈)
nvop2.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvop2 (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, 𝑁⟩)

Proof of Theorem nvop2
StepHypRef Expression
1 nvrel 26841 . . 3 Rel NrmCVec
2 1st2nd 7105 . . 3 ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
31, 2mpan 702 . 2 (𝑈 ∈ NrmCVec → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
4 nvop2.1 . . 3 𝑊 = (1st𝑈)
5 nvop2.6 . . . 4 𝑁 = (normCV𝑈)
65nmcvfval 26846 . . 3 𝑁 = (2nd𝑈)
74, 6opeq12i 4345 . 2 𝑊, 𝑁⟩ = ⟨(1st𝑈), (2nd𝑈)⟩
83, 7syl6eqr 2662 1 (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, 𝑁⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  cop 4131  Rel wrel 5043  cfv 5804  1st c1st 7057  2nd c2nd 7058  NrmCVeccnv 26823  normCVcnmcv 26829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-oprab 6553  df-1st 7059  df-2nd 7060  df-nv 26831  df-nmcv 26839
This theorem is referenced by:  nvvop  26848  nvi  26853
  Copyright terms: Public domain W3C validator