Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvlinv Structured version   Visualization version   GIF version

Theorem nvlinv 26891
 Description: Minus a vector plus itself. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvrinv.1 𝑋 = (BaseSet‘𝑈)
nvrinv.2 𝐺 = ( +𝑣𝑈)
nvrinv.4 𝑆 = ( ·𝑠OLD𝑈)
nvrinv.6 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nvlinv ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((-1𝑆𝐴)𝐺𝐴) = 𝑍)

Proof of Theorem nvlinv
StepHypRef Expression
1 nvrinv.2 . . . 4 𝐺 = ( +𝑣𝑈)
21nvgrp 26856 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvrinv.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
43, 1bafval 26843 . . . 4 𝑋 = ran 𝐺
5 eqid 2610 . . . 4 (GId‘𝐺) = (GId‘𝐺)
6 eqid 2610 . . . 4 (inv‘𝐺) = (inv‘𝐺)
74, 5, 6grpolinv 26764 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((inv‘𝐺)‘𝐴)𝐺𝐴) = (GId‘𝐺))
82, 7sylan 487 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((inv‘𝐺)‘𝐴)𝐺𝐴) = (GId‘𝐺))
9 nvrinv.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
103, 1, 9, 6nvinv 26878 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) = ((inv‘𝐺)‘𝐴))
1110oveq1d 6564 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (((inv‘𝐺)‘𝐴)𝐺𝐴))
12 nvrinv.6 . . . 4 𝑍 = (0vec𝑈)
131, 120vfval 26845 . . 3 (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺))
1413adantr 480 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 𝑍 = (GId‘𝐺))
158, 11, 143eqtr4d 2654 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((-1𝑆𝐴)𝐺𝐴) = 𝑍)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  1c1 9816  -cneg 10146  GrpOpcgr 26727  GIdcgi 26728  invcgn 26729  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  0veccn0v 26827 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-neg 10148  df-grpo 26731  df-gid 26732  df-ginv 26733  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839 This theorem is referenced by:  nvabs  26911  imsmetlem  26929  lno0  26995
 Copyright terms: Public domain W3C validator