Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numsucc | Structured version Visualization version GIF version |
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numsucc.1 | ⊢ 𝑌 ∈ ℕ0 |
numsucc.2 | ⊢ 𝑇 = (𝑌 + 1) |
numsucc.3 | ⊢ 𝐴 ∈ ℕ0 |
numsucc.4 | ⊢ (𝐴 + 1) = 𝐵 |
numsucc.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) |
Ref | Expression |
---|---|
numsucc | ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numsucc.2 | . . . . . . 7 ⊢ 𝑇 = (𝑌 + 1) | |
2 | numsucc.1 | . . . . . . . 8 ⊢ 𝑌 ∈ ℕ0 | |
3 | 1nn0 11185 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
4 | 2, 3 | nn0addcli 11207 | . . . . . . 7 ⊢ (𝑌 + 1) ∈ ℕ0 |
5 | 1, 4 | eqeltri 2684 | . . . . . 6 ⊢ 𝑇 ∈ ℕ0 |
6 | 5 | nn0cni 11181 | . . . . 5 ⊢ 𝑇 ∈ ℂ |
7 | 6 | mulid1i 9921 | . . . 4 ⊢ (𝑇 · 1) = 𝑇 |
8 | 7 | oveq2i 6560 | . . 3 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
9 | numsucc.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
10 | 9 | nn0cni 11181 | . . . 4 ⊢ 𝐴 ∈ ℂ |
11 | ax-1cn 9873 | . . . 4 ⊢ 1 ∈ ℂ | |
12 | 6, 10, 11 | adddii 9929 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
13 | 1 | eqcomi 2619 | . . . 4 ⊢ (𝑌 + 1) = 𝑇 |
14 | numsucc.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) | |
15 | 5, 9, 2, 13, 14 | numsuc 11387 | . . 3 ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝑇) |
16 | 8, 12, 15 | 3eqtr4ri 2643 | . 2 ⊢ (𝑁 + 1) = (𝑇 · (𝐴 + 1)) |
17 | numsucc.4 | . . 3 ⊢ (𝐴 + 1) = 𝐵 | |
18 | 17 | oveq2i 6560 | . 2 ⊢ (𝑇 · (𝐴 + 1)) = (𝑇 · 𝐵) |
19 | 9, 3 | nn0addcli 11207 | . . . 4 ⊢ (𝐴 + 1) ∈ ℕ0 |
20 | 17, 19 | eqeltrri 2685 | . . 3 ⊢ 𝐵 ∈ ℕ0 |
21 | 5, 20 | num0u 11384 | . 2 ⊢ (𝑇 · 𝐵) = ((𝑇 · 𝐵) + 0) |
22 | 16, 18, 21 | 3eqtri 2636 | 1 ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 (class class class)co 6549 0cc0 9815 1c1 9816 + caddc 9818 · cmul 9820 ℕ0cn0 11169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 df-nn 10898 df-n0 11170 |
This theorem is referenced by: decsucc 11426 decsuccOLD 11427 |
Copyright terms: Public domain | W3C validator |