Step | Hyp | Ref
| Expression |
1 | | numclwwlk.c |
. . . 4
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛)) |
2 | | numclwwlk.f |
. . . 4
⊢ 𝐹 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶‘𝑛) ∣ (𝑤‘0) = 𝑣}) |
3 | | numclwwlk.g |
. . . 4
⊢ 𝐺 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2)
↦ {𝑤 ∈ (𝐶‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))}) |
4 | 1, 2, 3 | numclwwlkovgel 26615 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑃 ∈ (𝑋𝐺𝑁) ↔ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)))) |
5 | 4 | 3adant1 1072 |
. 2
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑃 ∈ (𝑋𝐺𝑁) ↔ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)))) |
6 | | usgrav 25867 |
. . . . . . . . . . . . 13
⊢ (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
7 | | eluzge2nn0 11603 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈
ℕ0) |
8 | 6, 7 | anim12i 588 |
. . . . . . . . . . . 12
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((𝑉 ∈ V ∧
𝐸 ∈ V) ∧ 𝑁 ∈
ℕ0)) |
9 | | df-3an 1033 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0)
↔ ((𝑉 ∈ V ∧
𝐸 ∈ V) ∧ 𝑁 ∈
ℕ0)) |
10 | 8, 9 | sylibr 223 |
. . . . . . . . . . 11
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑉 ∈ V ∧
𝐸 ∈ V ∧ 𝑁 ∈
ℕ0)) |
11 | | isclwwlkn 26297 |
. . . . . . . . . . 11
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0)
→ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ (𝑃 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝑃) = 𝑁))) |
12 | 10, 11 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ (𝑃 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝑃) = 𝑁))) |
13 | | isclwwlk 26296 |
. . . . . . . . . . . . 13
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑃 ∈ (𝑉 ClWWalks 𝐸) ↔ (𝑃 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ ran 𝐸))) |
14 | 6, 13 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑉 USGrph 𝐸 → (𝑃 ∈ (𝑉 ClWWalks 𝐸) ↔ (𝑃 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ ran 𝐸))) |
15 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑃 ∈ (𝑉 ClWWalks 𝐸) ↔ (𝑃 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ ran 𝐸))) |
16 | 15 | anbi1d 737 |
. . . . . . . . . 10
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((𝑃 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝑃) = 𝑁) ↔ ((𝑃 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ ran 𝐸) ∧ (#‘𝑃) = 𝑁))) |
17 | 12, 16 | bitrd 267 |
. . . . . . . . 9
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ ((𝑃 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ ran 𝐸) ∧ (#‘𝑃) = 𝑁))) |
18 | | simp1 1054 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ ran 𝐸) → 𝑃 ∈ Word 𝑉) |
19 | 18 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((𝑃 ∈ Word
𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ ran 𝐸) → 𝑃 ∈ Word 𝑉)) |
20 | 19 | anim1d 586 |
. . . . . . . . 9
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (((𝑃 ∈ Word
𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ ran 𝐸) ∧ (#‘𝑃) = 𝑁) → (𝑃 ∈ Word 𝑉 ∧ (#‘𝑃) = 𝑁))) |
21 | 17, 20 | sylbid 229 |
. . . . . . . 8
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) → (𝑃 ∈ Word 𝑉 ∧ (#‘𝑃) = 𝑁))) |
22 | 21 | 3adant2 1073 |
. . . . . . 7
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) → (𝑃 ∈ Word 𝑉 ∧ (#‘𝑃) = 𝑁))) |
23 | 22 | com12 32 |
. . . . . 6
⊢ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) → ((𝑉 USGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑃 ∈ Word 𝑉 ∧ (#‘𝑃) = 𝑁))) |
24 | 23 | 3ad2ant1 1075 |
. . . . 5
⊢ ((𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)) → ((𝑉 USGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑃 ∈ Word 𝑉 ∧ (#‘𝑃) = 𝑁))) |
25 | 24 | impcom 445 |
. . . 4
⊢ (((𝑉 USGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
∧ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))) → (𝑃 ∈ Word 𝑉 ∧ (#‘𝑃) = 𝑁)) |
26 | | 3simpc 1053 |
. . . . 5
⊢ ((𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)) → ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))) |
27 | 26 | adantl 481 |
. . . 4
⊢ (((𝑉 USGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
∧ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))) → ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))) |
28 | 25, 27 | jca 553 |
. . 3
⊢ (((𝑉 USGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
∧ (𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))) → ((𝑃 ∈ Word 𝑉 ∧ (#‘𝑃) = 𝑁) ∧ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)))) |
29 | 28 | ex 449 |
. 2
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ ((𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)) → ((𝑃 ∈ Word 𝑉 ∧ (#‘𝑃) = 𝑁) ∧ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))))) |
30 | 5, 29 | sylbid 229 |
1
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))
→ (𝑃 ∈ (𝑋𝐺𝑁) → ((𝑃 ∈ Word 𝑉 ∧ (#‘𝑃) = 𝑁) ∧ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))))) |