Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneikb Structured version   Visualization version   GIF version

Theorem ntrneikb 37412
Description: The interiors of disjoint sets are disjoint if and only if the neighborhoods of every point contain no disjoint sets. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneikb (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑡,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑡,𝑖,𝑗,𝑠)   𝑁(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneikb
StepHypRef Expression
1 con34b 305 . . . . . . 7 (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ (¬ (𝑠𝑡) ≠ ∅ → ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
21albii 1737 . . . . . 6 (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥(¬ (𝑠𝑡) ≠ ∅ → ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
3 19.21v 1855 . . . . . 6 (∀𝑥(¬ (𝑠𝑡) ≠ ∅ → ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) ↔ (¬ (𝑠𝑡) ≠ ∅ → ∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
4 nne 2786 . . . . . . 7 (¬ (𝑠𝑡) ≠ ∅ ↔ (𝑠𝑡) = ∅)
5 elin 3758 . . . . . . . . . . 11 (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)))
65imbi1i 338 . . . . . . . . . 10 ((𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅) ↔ ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥 ∈ ∅))
7 noel 3878 . . . . . . . . . . 11 ¬ 𝑥 ∈ ∅
8 imnot 354 . . . . . . . . . . 11 𝑥 ∈ ∅ → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥 ∈ ∅) ↔ ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))))
97, 8ax-mp 5 . . . . . . . . . 10 (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥 ∈ ∅) ↔ ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)))
106, 9bitr2i 264 . . . . . . . . 9 (¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅))
1110albii 1737 . . . . . . . 8 (∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ ∀𝑥(𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅))
12 dfss2 3557 . . . . . . . 8 (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ ∅ ↔ ∀𝑥(𝑥 ∈ ((𝐼𝑠) ∩ (𝐼𝑡)) → 𝑥 ∈ ∅))
13 ss0b 3925 . . . . . . . 8 (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ ∅ ↔ ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)
1411, 12, 133bitr2i 287 . . . . . . 7 (∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)
154, 14imbi12i 339 . . . . . 6 ((¬ (𝑠𝑡) ≠ ∅ → ∀𝑥 ¬ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) ↔ ((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
162, 3, 153bitrri 286 . . . . 5 (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅))
17 ntrnei.o . . . . . . . . . . . . . . . . . . 19 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
18 ntrnei.f . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝒫 𝐵𝑂𝐵)
19 ntrnei.r . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼𝐹𝑁)
2017, 18, 19ntrneiiex 37394 . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
21 elmapi 7765 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2220, 21syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
2322ffvelrnda 6267 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
2423adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
2524elpwid 4118 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
2625sseld 3567 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼𝑠) → 𝑥𝐵))
2726adantrd 483 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → 𝑥𝐵))
2827imp 444 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) → 𝑥𝐵)
29 biimt 349 . . . . . . . . . . 11 (𝑥𝐵 → ((𝑠𝑡) ≠ ∅ ↔ (𝑥𝐵 → (𝑠𝑡) ≠ ∅)))
3028, 29syl 17 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ (𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡))) → ((𝑠𝑡) ≠ ∅ ↔ (𝑥𝐵 → (𝑠𝑡) ≠ ∅)))
3130pm5.74da 719 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑥𝐵 → (𝑠𝑡) ≠ ∅))))
32 bi2.04 375 . . . . . . . . 9 (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑥𝐵 → (𝑠𝑡) ≠ ∅)) ↔ (𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅)))
3331, 32syl6bb 275 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ (𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅))))
3433albidv 1836 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥(𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅))))
35 df-ral 2901 . . . . . . 7 (∀𝑥𝐵 ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥(𝑥𝐵 → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅)))
3634, 35syl6bbr 277 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵 ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅)))
3719ad3antrrr 762 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
38 simpr 476 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
39 simpllr 795 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
4017, 18, 37, 38, 39ntrneiel 37399 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
41 simplr 788 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡 ∈ 𝒫 𝐵)
4217, 18, 37, 38, 41ntrneiel 37399 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑡) ↔ 𝑡 ∈ (𝑁𝑥)))
4340, 42anbi12d 743 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥))))
4443imbi1d 330 . . . . . . 7 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4544ralbidva 2968 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥𝐵 ((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4636, 45bitrd 267 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥((𝑥 ∈ (𝐼𝑠) ∧ 𝑥 ∈ (𝐼𝑡)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4716, 46syl5bb 271 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4847ralbidva 2968 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
4948ralbidva 2968 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
50 alrot3 2025 . . . 4 (∀𝑥𝑠𝑡((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)) ↔ ∀𝑠𝑡𝑥((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
51 3anrot 1036 . . . . . . 7 ((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) ↔ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵))
5251imbi1i 338 . . . . . 6 (((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)) ↔ ((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
5352albii 1737 . . . . 5 (∀𝑥((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)) ↔ ∀𝑥((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
54532albii 1738 . . . 4 (∀𝑠𝑡𝑥((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)) ↔ ∀𝑠𝑡𝑥((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
5550, 54bitr2i 264 . . 3 (∀𝑠𝑡𝑥((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)) ↔ ∀𝑥𝑠𝑡((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
56 r3al 2924 . . 3 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑠𝑡𝑥((𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
57 r3al 2924 . . 3 (∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝑠𝑡((𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
5855, 56, 573bitr4i 291 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅))
5949, 58syl6bb 275 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator