Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneik4w Structured version   Visualization version   GIF version

Theorem ntrneik4w 37418
Description: Idempotence of the interior function is equivalent to saying a set is a neighborhood of a point if and only if the interior of the set is a neighborhood of a point. (Contributed by RP, 11-Jul-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneik4w (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneik4w
StepHypRef Expression
1 dfcleq 2604 . . . . 5 ((𝐼𝑠) = (𝐼‘(𝐼𝑠)) ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
2 eqcom 2617 . . . . 5 ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ (𝐼𝑠) = (𝐼‘(𝐼𝑠)))
3 ralv 3192 . . . . 5 (∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
41, 2, 33bitr4i 291 . . . 4 ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
5 ssv 3588 . . . . . . 7 𝐵 ⊆ V
65a1i 11 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐵 ⊆ V)
7 vex 3176 . . . . . . . . 9 𝑥 ∈ V
8 eldif 3550 . . . . . . . . 9 (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐵))
97, 8mpbiran 955 . . . . . . . 8 (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥𝐵)
10 ntrnei.o . . . . . . . . . . . . . . . 16 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
11 ntrnei.f . . . . . . . . . . . . . . . 16 𝐹 = (𝒫 𝐵𝑂𝐵)
12 ntrnei.r . . . . . . . . . . . . . . . 16 (𝜑𝐼𝐹𝑁)
1310, 11, 12ntrneiiex 37394 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
14 elmapi 7765 . . . . . . . . . . . . . . 15 (𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
1615ffvelrnda 6267 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
1716elpwid 4118 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
1817sseld 3567 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼𝑠) → 𝑥𝐵))
1918con3dimp 456 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐼𝑠))
2015adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2120, 16ffvelrnd 6268 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼‘(𝐼𝑠)) ∈ 𝒫 𝐵)
2221elpwid 4118 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼‘(𝐼𝑠)) ⊆ 𝐵)
2322sseld 3567 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼‘(𝐼𝑠)) → 𝑥𝐵))
2423con3dimp 456 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐼‘(𝐼𝑠)))
2519, 242falsed 365 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
2625ex 449 . . . . . . . 8 ((𝜑𝑠 ∈ 𝒫 𝐵) → (¬ 𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
279, 26syl5bi 231 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (V ∖ 𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
2827ralrimiv 2948 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → ∀𝑥 ∈ (V ∖ 𝐵)(𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))))
296, 28raldifeq 4011 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠)))))
3012adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁)
3130adantr 480 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
32 simpr 476 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
33 simplr 788 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
3410, 11, 31, 32, 33ntrneiel 37399 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
3516adantr 480 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
3610, 11, 31, 32, 35ntrneiel 37399 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼‘(𝐼𝑠)) ↔ (𝐼𝑠) ∈ (𝑁𝑥)))
3734, 36bibi12d 334 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
3837ralbidva 2968 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
3929, 38bitr3d 269 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥 ∈ V (𝑥 ∈ (𝐼𝑠) ↔ 𝑥 ∈ (𝐼‘(𝐼𝑠))) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
404, 39syl5bb 271 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
4140ralbidva 2968 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
42 ralcom 3079 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)))
4341, 42syl6bb 275 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746
This theorem is referenced by:  ntrneik4  37419
  Copyright terms: Public domain W3C validator