Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneifv2 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of converse of 𝐹 is the interior function. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneifv2 | ⊢ (𝜑 → (◡𝐹‘𝑁) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.r | . 2 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
2 | ntrnei.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | ntrnei.f | . . . . . 6 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
4 | 2, 3, 1 | ntrneif1o 37393 | . . . . 5 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
5 | 2, 3, 1 | ntrneinex 37395 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
6 | dff1o3 6056 | . . . . . . . 8 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ↔ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ∧ Fun ◡𝐹)) | |
7 | 6 | simprbi 479 | . . . . . . 7 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → Fun ◡𝐹) |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) → Fun ◡𝐹) |
9 | df-rn 5049 | . . . . . . . . 9 ⊢ ran 𝐹 = dom ◡𝐹 | |
10 | f1ofo 6057 | . . . . . . . . . 10 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → 𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵)) | |
11 | forn 6031 | . . . . . . . . . 10 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
13 | 9, 12 | syl5eqr 2658 | . . . . . . . 8 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → dom ◡𝐹 = (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) |
14 | 13 | eleq2d 2673 | . . . . . . 7 ⊢ (𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) → (𝑁 ∈ dom ◡𝐹 ↔ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵))) |
15 | 14 | biimpar 501 | . . . . . 6 ⊢ ((𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) → 𝑁 ∈ dom ◡𝐹) |
16 | 8, 15 | jca 553 | . . . . 5 ⊢ ((𝐹:(𝒫 𝐵 ↑𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑𝑚 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵)) → (Fun ◡𝐹 ∧ 𝑁 ∈ dom ◡𝐹)) |
17 | 4, 5, 16 | syl2anc 691 | . . . 4 ⊢ (𝜑 → (Fun ◡𝐹 ∧ 𝑁 ∈ dom ◡𝐹)) |
18 | funbrfvb 6148 | . . . 4 ⊢ ((Fun ◡𝐹 ∧ 𝑁 ∈ dom ◡𝐹) → ((◡𝐹‘𝑁) = 𝐼 ↔ 𝑁◡𝐹𝐼)) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → ((◡𝐹‘𝑁) = 𝐼 ↔ 𝑁◡𝐹𝐼)) |
20 | 2, 3, 1 | ntrneiiex 37394 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
21 | brcnvg 5225 | . . . 4 ⊢ ((𝑁 ∈ (𝒫 𝒫 𝐵 ↑𝑚 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) → (𝑁◡𝐹𝐼 ↔ 𝐼𝐹𝑁)) | |
22 | 5, 20, 21 | syl2anc 691 | . . 3 ⊢ (𝜑 → (𝑁◡𝐹𝐼 ↔ 𝐼𝐹𝑁)) |
23 | 19, 22 | bitrd 267 | . 2 ⊢ (𝜑 → ((◡𝐹‘𝑁) = 𝐼 ↔ 𝐼𝐹𝑁)) |
24 | 1, 23 | mpbird 246 | 1 ⊢ (𝜑 → (◡𝐹‘𝑁) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 Vcvv 3173 𝒫 cpw 4108 class class class wbr 4583 ↦ cmpt 4643 ◡ccnv 5037 dom cdm 5038 ran crn 5039 Fun wfun 5798 –onto→wfo 5802 –1-1-onto→wf1o 5803 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 ↑𝑚 cmap 7744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-map 7746 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |