Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneifv2 Structured version   Visualization version   GIF version

Theorem ntrneifv2 37398
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of converse of 𝐹 is the interior function. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneifv2 (𝜑 → (𝐹𝑁) = 𝐼)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneifv2
StepHypRef Expression
1 ntrnei.r . 2 (𝜑𝐼𝐹𝑁)
2 ntrnei.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
42, 3, 1ntrneif1o 37393 . . . . 5 (𝜑𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵))
52, 3, 1ntrneinex 37395 . . . . 5 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵))
6 dff1o3 6056 . . . . . . . 8 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) ↔ (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵𝑚 𝐵) ∧ Fun 𝐹))
76simprbi 479 . . . . . . 7 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → Fun 𝐹)
87adantr 480 . . . . . 6 ((𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵)) → Fun 𝐹)
9 df-rn 5049 . . . . . . . . 9 ran 𝐹 = dom 𝐹
10 f1ofo 6057 . . . . . . . . . 10 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → 𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵𝑚 𝐵))
11 forn 6031 . . . . . . . . . 10 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–onto→(𝒫 𝒫 𝐵𝑚 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵𝑚 𝐵))
1210, 11syl 17 . . . . . . . . 9 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → ran 𝐹 = (𝒫 𝒫 𝐵𝑚 𝐵))
139, 12syl5eqr 2658 . . . . . . . 8 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → dom 𝐹 = (𝒫 𝒫 𝐵𝑚 𝐵))
1413eleq2d 2673 . . . . . . 7 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → (𝑁 ∈ dom 𝐹𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵)))
1514biimpar 501 . . . . . 6 ((𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵)) → 𝑁 ∈ dom 𝐹)
168, 15jca 553 . . . . 5 ((𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) ∧ 𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵)) → (Fun 𝐹𝑁 ∈ dom 𝐹))
174, 5, 16syl2anc 691 . . . 4 (𝜑 → (Fun 𝐹𝑁 ∈ dom 𝐹))
18 funbrfvb 6148 . . . 4 ((Fun 𝐹𝑁 ∈ dom 𝐹) → ((𝐹𝑁) = 𝐼𝑁𝐹𝐼))
1917, 18syl 17 . . 3 (𝜑 → ((𝐹𝑁) = 𝐼𝑁𝐹𝐼))
202, 3, 1ntrneiiex 37394 . . . 4 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
21 brcnvg 5225 . . . 4 ((𝑁 ∈ (𝒫 𝒫 𝐵𝑚 𝐵) ∧ 𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → (𝑁𝐹𝐼𝐼𝐹𝑁))
225, 20, 21syl2anc 691 . . 3 (𝜑 → (𝑁𝐹𝐼𝐼𝐹𝑁))
2319, 22bitrd 267 . 2 (𝜑 → ((𝐹𝑁) = 𝐼𝐼𝐹𝑁))
241, 23mpbird 246 1 (𝜑 → (𝐹𝑁) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  Fun wfun 5798  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator