Proof of Theorem ntrk0kbimka
Step | Hyp | Ref
| Expression |
1 | | pwidg 4121 |
. . . . 5
⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ 𝒫 𝐵) |
2 | 1 | ad2antrr 758 |
. . . 4
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) ∧ ((𝐼‘𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅))) → 𝐵 ∈ 𝒫 𝐵) |
3 | | 0elpw 4760 |
. . . . 5
⊢ ∅
∈ 𝒫 𝐵 |
4 | 3 | a1i 11 |
. . . 4
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) ∧ ((𝐼‘𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅))) → ∅ ∈
𝒫 𝐵) |
5 | | simprr 792 |
. . . 4
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) ∧ ((𝐼‘𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅))) → ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅)) |
6 | | ineq1 3769 |
. . . . . . 7
⊢ (𝑠 = 𝐵 → (𝑠 ∩ 𝑡) = (𝐵 ∩ 𝑡)) |
7 | 6 | eqeq1d 2612 |
. . . . . 6
⊢ (𝑠 = 𝐵 → ((𝑠 ∩ 𝑡) = ∅ ↔ (𝐵 ∩ 𝑡) = ∅)) |
8 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑠 = 𝐵 → (𝐼‘𝑠) = (𝐼‘𝐵)) |
9 | 8 | ineq1d 3775 |
. . . . . . 7
⊢ (𝑠 = 𝐵 → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ((𝐼‘𝐵) ∩ (𝐼‘𝑡))) |
10 | 9 | eqeq1d 2612 |
. . . . . 6
⊢ (𝑠 = 𝐵 → (((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅ ↔ ((𝐼‘𝐵) ∩ (𝐼‘𝑡)) = ∅)) |
11 | 7, 10 | imbi12d 333 |
. . . . 5
⊢ (𝑠 = 𝐵 → (((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ((𝐵 ∩ 𝑡) = ∅ → ((𝐼‘𝐵) ∩ (𝐼‘𝑡)) = ∅))) |
12 | | ineq2 3770 |
. . . . . . . 8
⊢ (𝑡 = ∅ → (𝐵 ∩ 𝑡) = (𝐵 ∩ ∅)) |
13 | 12 | eqeq1d 2612 |
. . . . . . 7
⊢ (𝑡 = ∅ → ((𝐵 ∩ 𝑡) = ∅ ↔ (𝐵 ∩ ∅) = ∅)) |
14 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑡 = ∅ → (𝐼‘𝑡) = (𝐼‘∅)) |
15 | 14 | ineq2d 3776 |
. . . . . . . 8
⊢ (𝑡 = ∅ → ((𝐼‘𝐵) ∩ (𝐼‘𝑡)) = ((𝐼‘𝐵) ∩ (𝐼‘∅))) |
16 | 15 | eqeq1d 2612 |
. . . . . . 7
⊢ (𝑡 = ∅ → (((𝐼‘𝐵) ∩ (𝐼‘𝑡)) = ∅ ↔ ((𝐼‘𝐵) ∩ (𝐼‘∅)) =
∅)) |
17 | 13, 16 | imbi12d 333 |
. . . . . 6
⊢ (𝑡 = ∅ → (((𝐵 ∩ 𝑡) = ∅ → ((𝐼‘𝐵) ∩ (𝐼‘𝑡)) = ∅) ↔ ((𝐵 ∩ ∅) = ∅ → ((𝐼‘𝐵) ∩ (𝐼‘∅)) =
∅))) |
18 | | in0 3920 |
. . . . . . 7
⊢ (𝐵 ∩ ∅) =
∅ |
19 | | pm5.5 350 |
. . . . . . 7
⊢ ((𝐵 ∩ ∅) = ∅ →
(((𝐵 ∩ ∅) =
∅ → ((𝐼‘𝐵) ∩ (𝐼‘∅)) = ∅) ↔ ((𝐼‘𝐵) ∩ (𝐼‘∅)) =
∅)) |
20 | 18, 19 | mp1i 13 |
. . . . . 6
⊢ (𝑡 = ∅ → (((𝐵 ∩ ∅) = ∅ →
((𝐼‘𝐵) ∩ (𝐼‘∅)) = ∅) ↔ ((𝐼‘𝐵) ∩ (𝐼‘∅)) =
∅)) |
21 | 17, 20 | bitrd 267 |
. . . . 5
⊢ (𝑡 = ∅ → (((𝐵 ∩ 𝑡) = ∅ → ((𝐼‘𝐵) ∩ (𝐼‘𝑡)) = ∅) ↔ ((𝐼‘𝐵) ∩ (𝐼‘∅)) =
∅)) |
22 | 11, 21 | rspc2va 3294 |
. . . 4
⊢ (((𝐵 ∈ 𝒫 𝐵 ∧ ∅ ∈ 𝒫
𝐵) ∧ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅)) → ((𝐼‘𝐵) ∩ (𝐼‘∅)) = ∅) |
23 | 2, 4, 5, 22 | syl21anc 1317 |
. . 3
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) ∧ ((𝐼‘𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅))) → ((𝐼‘𝐵) ∩ (𝐼‘∅)) = ∅) |
24 | 23 | ex 449 |
. 2
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) → (((𝐼‘𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅)) → ((𝐼‘𝐵) ∩ (𝐼‘∅)) =
∅)) |
25 | | elmapi 7765 |
. . . . . 6
⊢ (𝐼 ∈ (𝒫 𝐵 ↑𝑚
𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
26 | 25 | adantl 481 |
. . . . 5
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
27 | 3 | a1i 11 |
. . . . 5
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) → ∅ ∈
𝒫 𝐵) |
28 | 26, 27 | ffvelrnd 6268 |
. . . 4
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) → (𝐼‘∅) ∈ 𝒫 𝐵) |
29 | 28 | elpwid 4118 |
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) → (𝐼‘∅) ⊆ 𝐵) |
30 | | simpl 472 |
. . 3
⊢ (((𝐼‘𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅)) → (𝐼‘𝐵) = 𝐵) |
31 | | ineq1 3769 |
. . . . . . . 8
⊢ ((𝐼‘𝐵) = 𝐵 → ((𝐼‘𝐵) ∩ (𝐼‘∅)) = (𝐵 ∩ (𝐼‘∅))) |
32 | | incom 3767 |
. . . . . . . 8
⊢ (𝐵 ∩ (𝐼‘∅)) = ((𝐼‘∅) ∩ 𝐵) |
33 | 31, 32 | syl6eq 2660 |
. . . . . . 7
⊢ ((𝐼‘𝐵) = 𝐵 → ((𝐼‘𝐵) ∩ (𝐼‘∅)) = ((𝐼‘∅) ∩ 𝐵)) |
34 | 33 | eqeq1d 2612 |
. . . . . 6
⊢ ((𝐼‘𝐵) = 𝐵 → (((𝐼‘𝐵) ∩ (𝐼‘∅)) = ∅ ↔ ((𝐼‘∅) ∩ 𝐵) = ∅)) |
35 | 34 | biimpd 218 |
. . . . 5
⊢ ((𝐼‘𝐵) = 𝐵 → (((𝐼‘𝐵) ∩ (𝐼‘∅)) = ∅ → ((𝐼‘∅) ∩ 𝐵) = ∅)) |
36 | | reldisj 3972 |
. . . . . . 7
⊢ ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵 ∖ 𝐵))) |
37 | 36 | biimpd 218 |
. . . . . 6
⊢ ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ → (𝐼‘∅) ⊆ (𝐵 ∖ 𝐵))) |
38 | | difid 3902 |
. . . . . . . 8
⊢ (𝐵 ∖ 𝐵) = ∅ |
39 | 38 | sseq2i 3593 |
. . . . . . 7
⊢ ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ (𝐼‘∅) ⊆
∅) |
40 | | ss0 3926 |
. . . . . . 7
⊢ ((𝐼‘∅) ⊆ ∅
→ (𝐼‘∅) =
∅) |
41 | 39, 40 | sylbi 206 |
. . . . . 6
⊢ ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) → (𝐼‘∅) = ∅) |
42 | 37, 41 | syl6com 36 |
. . . . 5
⊢ (((𝐼‘∅) ∩ 𝐵) = ∅ → ((𝐼‘∅) ⊆ 𝐵 → (𝐼‘∅) = ∅)) |
43 | 35, 42 | syl6com 36 |
. . . 4
⊢ (((𝐼‘𝐵) ∩ (𝐼‘∅)) = ∅ → ((𝐼‘𝐵) = 𝐵 → ((𝐼‘∅) ⊆ 𝐵 → (𝐼‘∅) =
∅))) |
44 | 43 | com13 86 |
. . 3
⊢ ((𝐼‘∅) ⊆ 𝐵 → ((𝐼‘𝐵) = 𝐵 → (((𝐼‘𝐵) ∩ (𝐼‘∅)) = ∅ → (𝐼‘∅) =
∅))) |
45 | 29, 30, 44 | syl2im 39 |
. 2
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) → (((𝐼‘𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅)) → (((𝐼‘𝐵) ∩ (𝐼‘∅)) = ∅ → (𝐼‘∅) =
∅))) |
46 | 24, 45 | mpdd 42 |
1
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) → (((𝐼‘𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅)) → (𝐼‘∅) = ∅)) |