MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgmullem Structured version   Visualization version   GIF version

Theorem ntrivcvgmullem 14472
Description: Lemma for ntrivcvgmul 14473. (Contributed by Scott Fenton, 19-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgmullem.1 𝑍 = (ℤ𝑀)
ntrivcvgmullem.2 (𝜑𝑁𝑍)
ntrivcvgmullem.3 (𝜑𝑃𝑍)
ntrivcvgmullem.4 (𝜑𝑋 ≠ 0)
ntrivcvgmullem.5 (𝜑𝑌 ≠ 0)
ntrivcvgmullem.6 (𝜑 → seq𝑁( · , 𝐹) ⇝ 𝑋)
ntrivcvgmullem.7 (𝜑 → seq𝑃( · , 𝐺) ⇝ 𝑌)
ntrivcvgmullem.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
ntrivcvgmullem.9 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
ntrivcvgmullem.a (𝜑𝑁𝑃)
ntrivcvgmullem.b ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
ntrivcvgmullem (𝜑 → ∃𝑞𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤))
Distinct variable groups:   𝑤,𝐹   𝐻,𝑞,𝑤   𝑃,𝑞,𝑤   𝑤,𝑌   𝑍,𝑞   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑃,𝑘   𝑘,𝑍   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑤,𝑞)   𝐹(𝑞)   𝐺(𝑤,𝑞)   𝑀(𝑤,𝑘,𝑞)   𝑁(𝑤,𝑞)   𝑋(𝑤,𝑘,𝑞)   𝑌(𝑘,𝑞)   𝑍(𝑤)

Proof of Theorem ntrivcvgmullem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ntrivcvgmullem.3 . 2 (𝜑𝑃𝑍)
2 eqid 2610 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
3 ntrivcvgmullem.a . . . . . . . 8 (𝜑𝑁𝑃)
4 ntrivcvgmullem.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
5 uzssz 11583 . . . . . . . . . . 11 (ℤ𝑀) ⊆ ℤ
64, 5eqsstri 3598 . . . . . . . . . 10 𝑍 ⊆ ℤ
7 ntrivcvgmullem.2 . . . . . . . . . 10 (𝜑𝑁𝑍)
86, 7sseldi 3566 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
96, 1sseldi 3566 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
10 eluz 11577 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑃 ∈ (ℤ𝑁) ↔ 𝑁𝑃))
118, 9, 10syl2anc 691 . . . . . . . 8 (𝜑 → (𝑃 ∈ (ℤ𝑁) ↔ 𝑁𝑃))
123, 11mpbird 246 . . . . . . 7 (𝜑𝑃 ∈ (ℤ𝑁))
13 ntrivcvgmullem.6 . . . . . . 7 (𝜑 → seq𝑁( · , 𝐹) ⇝ 𝑋)
14 ntrivcvgmullem.4 . . . . . . 7 (𝜑𝑋 ≠ 0)
154uztrn2 11581 . . . . . . . . 9 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
167, 15sylan 487 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
17 ntrivcvgmullem.8 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1816, 17syldan 486 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℂ)
192, 12, 13, 14, 18ntrivcvgtail 14471 . . . . . 6 (𝜑 → (( ⇝ ‘seq𝑃( · , 𝐹)) ≠ 0 ∧ seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹))))
2019simprd 478 . . . . 5 (𝜑 → seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹)))
21 climcl 14078 . . . . 5 (seq𝑃( · , 𝐹) ⇝ ( ⇝ ‘seq𝑃( · , 𝐹)) → ( ⇝ ‘seq𝑃( · , 𝐹)) ∈ ℂ)
2220, 21syl 17 . . . 4 (𝜑 → ( ⇝ ‘seq𝑃( · , 𝐹)) ∈ ℂ)
23 ntrivcvgmullem.7 . . . . 5 (𝜑 → seq𝑃( · , 𝐺) ⇝ 𝑌)
24 climcl 14078 . . . . 5 (seq𝑃( · , 𝐺) ⇝ 𝑌𝑌 ∈ ℂ)
2523, 24syl 17 . . . 4 (𝜑𝑌 ∈ ℂ)
2619simpld 474 . . . 4 (𝜑 → ( ⇝ ‘seq𝑃( · , 𝐹)) ≠ 0)
27 ntrivcvgmullem.5 . . . 4 (𝜑𝑌 ≠ 0)
2822, 25, 26, 27mulne0d 10558 . . 3 (𝜑 → (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0)
29 eqid 2610 . . . 4 (ℤ𝑃) = (ℤ𝑃)
30 seqex 12665 . . . . 5 seq𝑃( · , 𝐻) ∈ V
3130a1i 11 . . . 4 (𝜑 → seq𝑃( · , 𝐻) ∈ V)
324uztrn2 11581 . . . . . . . 8 ((𝑃𝑍𝑘 ∈ (ℤ𝑃)) → 𝑘𝑍)
331, 32sylan 487 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑃)) → 𝑘𝑍)
3433, 17syldan 486 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑃)) → (𝐹𝑘) ∈ ℂ)
3529, 9, 34prodf 14458 . . . . 5 (𝜑 → seq𝑃( · , 𝐹):(ℤ𝑃)⟶ℂ)
3635ffvelrnda 6267 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑃)) → (seq𝑃( · , 𝐹)‘𝑗) ∈ ℂ)
37 ntrivcvgmullem.9 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
3833, 37syldan 486 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑃)) → (𝐺𝑘) ∈ ℂ)
3929, 9, 38prodf 14458 . . . . 5 (𝜑 → seq𝑃( · , 𝐺):(ℤ𝑃)⟶ℂ)
4039ffvelrnda 6267 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑃)) → (seq𝑃( · , 𝐺)‘𝑗) ∈ ℂ)
41 simpr 476 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝑃)) → 𝑗 ∈ (ℤ𝑃))
42 simpll 786 . . . . . 6 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → 𝜑)
431adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑃)) → 𝑃𝑍)
44 elfzuz 12209 . . . . . . 7 (𝑘 ∈ (𝑃...𝑗) → 𝑘 ∈ (ℤ𝑃))
4543, 44, 32syl2an 493 . . . . . 6 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → 𝑘𝑍)
4642, 45, 17syl2anc 691 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐹𝑘) ∈ ℂ)
4742, 45, 37syl2anc 691 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐺𝑘) ∈ ℂ)
48 ntrivcvgmullem.b . . . . . 6 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
4942, 45, 48syl2anc 691 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑃)) ∧ 𝑘 ∈ (𝑃...𝑗)) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
5041, 46, 47, 49prodfmul 14461 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑃)) → (seq𝑃( · , 𝐻)‘𝑗) = ((seq𝑃( · , 𝐹)‘𝑗) · (seq𝑃( · , 𝐺)‘𝑗)))
5129, 9, 20, 31, 23, 36, 40, 50climmul 14211 . . 3 (𝜑 → seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌))
52 ovex 6577 . . . 4 (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ∈ V
53 neeq1 2844 . . . . 5 (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → (𝑤 ≠ 0 ↔ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0))
54 breq2 4587 . . . . 5 (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → (seq𝑃( · , 𝐻) ⇝ 𝑤 ↔ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌)))
5553, 54anbi12d 743 . . . 4 (𝑤 = (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) → ((𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤) ↔ ((( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌))))
5652, 55spcev 3273 . . 3 (((( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌) ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ (( ⇝ ‘seq𝑃( · , 𝐹)) · 𝑌)) → ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤))
5728, 51, 56syl2anc 691 . 2 (𝜑 → ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤))
58 seqeq1 12666 . . . . . 6 (𝑞 = 𝑃 → seq𝑞( · , 𝐻) = seq𝑃( · , 𝐻))
5958breq1d 4593 . . . . 5 (𝑞 = 𝑃 → (seq𝑞( · , 𝐻) ⇝ 𝑤 ↔ seq𝑃( · , 𝐻) ⇝ 𝑤))
6059anbi2d 736 . . . 4 (𝑞 = 𝑃 → ((𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤) ↔ (𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)))
6160exbidv 1837 . . 3 (𝑞 = 𝑃 → (∃𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤) ↔ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)))
6261rspcev 3282 . 2 ((𝑃𝑍 ∧ ∃𝑤(𝑤 ≠ 0 ∧ seq𝑃( · , 𝐻) ⇝ 𝑤)) → ∃𝑞𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤))
631, 57, 62syl2anc 691 1 (𝜑 → ∃𝑞𝑍𝑤(𝑤 ≠ 0 ∧ seq𝑞( · , 𝐻) ⇝ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  Vcvv 3173   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   · cmul 9820  cle 9954  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067
This theorem is referenced by:  ntrivcvgmul  14473
  Copyright terms: Public domain W3C validator