Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nthruc Structured version   Visualization version   GIF version

Theorem nthruc 14819
 Description: The sequence ℕ, ℤ, ℚ, ℝ, and ℂ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ℤ but not ℕ, one-half belongs to ℚ but not ℤ, the square root of 2 belongs to ℝ but not ℚ, and finally that the imaginary number i belongs to ℂ but not ℝ. See nthruz 14820 for a further refinement. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
nthruc ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ))

Proof of Theorem nthruc
StepHypRef Expression
1 nnssz 11274 . . . 4 ℕ ⊆ ℤ
2 0z 11265 . . . . 5 0 ∈ ℤ
3 0nnn 10929 . . . . 5 ¬ 0 ∈ ℕ
42, 3pm3.2i 470 . . . 4 (0 ∈ ℤ ∧ ¬ 0 ∈ ℕ)
5 ssnelpss 3680 . . . 4 (ℕ ⊆ ℤ → ((0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℤ))
61, 4, 5mp2 9 . . 3 ℕ ⊊ ℤ
7 zssq 11671 . . . 4 ℤ ⊆ ℚ
8 1z 11284 . . . . . 6 1 ∈ ℤ
9 2nn 11062 . . . . . 6 2 ∈ ℕ
10 znq 11668 . . . . . 6 ((1 ∈ ℤ ∧ 2 ∈ ℕ) → (1 / 2) ∈ ℚ)
118, 9, 10mp2an 704 . . . . 5 (1 / 2) ∈ ℚ
12 halfnz 11331 . . . . 5 ¬ (1 / 2) ∈ ℤ
1311, 12pm3.2i 470 . . . 4 ((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ)
14 ssnelpss 3680 . . . 4 (ℤ ⊆ ℚ → (((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) → ℤ ⊊ ℚ))
157, 13, 14mp2 9 . . 3 ℤ ⊊ ℚ
166, 15pm3.2i 470 . 2 (ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ)
17 qssre 11674 . . . 4 ℚ ⊆ ℝ
18 sqrt2re 14818 . . . . 5 (√‘2) ∈ ℝ
19 sqrt2irr 14817 . . . . . 6 (√‘2) ∉ ℚ
2019neli 2885 . . . . 5 ¬ (√‘2) ∈ ℚ
2118, 20pm3.2i 470 . . . 4 ((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ)
22 ssnelpss 3680 . . . 4 (ℚ ⊆ ℝ → (((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) → ℚ ⊊ ℝ))
2317, 21, 22mp2 9 . . 3 ℚ ⊊ ℝ
24 ax-resscn 9872 . . . 4 ℝ ⊆ ℂ
25 ax-icn 9874 . . . . 5 i ∈ ℂ
26 inelr 10887 . . . . 5 ¬ i ∈ ℝ
2725, 26pm3.2i 470 . . . 4 (i ∈ ℂ ∧ ¬ i ∈ ℝ)
28 ssnelpss 3680 . . . 4 (ℝ ⊆ ℂ → ((i ∈ ℂ ∧ ¬ i ∈ ℝ) → ℝ ⊊ ℂ))
2924, 27, 28mp2 9 . . 3 ℝ ⊊ ℂ
3023, 29pm3.2i 470 . 2 (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)
3116, 30pm3.2i 470 1 ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 383   ∈ wcel 1977   ⊆ wss 3540   ⊊ wpss 3541  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816  ici 9817   / cdiv 10563  ℕcn 10897  2c2 10947  ℤcz 11254  ℚcq 11664  √csqrt 13821 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator