MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmreg Structured version   Visualization version   GIF version

Theorem nrmreg 21437
Description: A normal T1 space is regular Hausdorff. In other words, a T4 space is T3 . One can get away with slightly weaker assumptions; see nrmr0reg 21362. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmreg ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg)

Proof of Theorem nrmreg
StepHypRef Expression
1 t1r0 21434 . 2 (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre)
2 nrmr0reg 21362 . 2 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg)
31, 2sylan2 490 1 ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  cfv 5804  Frect1 20921  Regcreg 20923  Nrmcnrm 20924  KQckq 21306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-1o 7447  df-map 7746  df-topgen 15927  df-qtop 15990  df-top 20521  df-topon 20523  df-cld 20633  df-cn 20841  df-t0 20927  df-t1 20928  df-reg 20930  df-nrm 20931  df-kq 21307  df-hmeo 21368  df-hmph 21369
This theorem is referenced by:  nrmhaus  21439  metreg  22474
  Copyright terms: Public domain W3C validator