MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrexrmo Structured version   Visualization version   GIF version

Theorem nrexrmo 3140
Description: Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.)
Assertion
Ref Expression
nrexrmo (¬ ∃𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem nrexrmo
StepHypRef Expression
1 pm2.21 119 . 2 (¬ ∃𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
2 rmo5 3139 . 2 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
31, 2sylibr 223 1 (¬ ∃𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wrex 2897  ∃!wreu 2898  ∃*wrmo 2899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-mo 2463  df-rex 2902  df-reu 2903  df-rmo 2904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator