Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > notbinot1 | Structured version Visualization version GIF version |
Description: Simplification rule of negation across a biimplication. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
Ref | Expression |
---|---|
notbinot1 | ⊢ (¬ (¬ 𝜑 ↔ 𝜓) ↔ (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbbn 372 | . . 3 ⊢ ((¬ 𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
2 | 1 | bicomi 213 | . 2 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ 𝜓)) |
3 | 2 | con1bii 345 | 1 ⊢ (¬ (¬ 𝜑 ↔ 𝜓) ↔ (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 |
This theorem is referenced by: bicontr 33049 |
Copyright terms: Public domain | W3C validator |