Proof of Theorem normpar
Step | Hyp | Ref
| Expression |
1 | | oveq1 6556 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 −ℎ
𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) |
2 | 1 | fveq2d 6107 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 −ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))) |
3 | 2 | oveq1d 6564 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 −ℎ 𝐵))↑2) =
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2)) |
4 | | oveq1 6556 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵)) |
5 | 4 | fveq2d 6107 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 +ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))) |
6 | 5 | oveq1d 6564 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 +ℎ 𝐵))↑2) =
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2)) |
7 | 3, 6 | oveq12d 6567 |
. . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(((normℎ‘(𝐴 −ℎ 𝐵))↑2) +
((normℎ‘(𝐴 +ℎ 𝐵))↑2)) =
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2))) |
8 | | fveq2 6103 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘𝐴) = (normℎ‘if(𝐴 ∈ ℋ, 𝐴,
0ℎ))) |
9 | 8 | oveq1d 6564 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘𝐴)↑2) =
((normℎ‘if(𝐴 ∈ ℋ, 𝐴,
0ℎ))↑2)) |
10 | 9 | oveq2d 6565 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (2 ·
((normℎ‘𝐴)↑2)) = (2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴,
0ℎ))↑2))) |
11 | 10 | oveq1d 6564 |
. . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((2 ·
((normℎ‘𝐴)↑2)) + (2 ·
((normℎ‘𝐵)↑2))) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘𝐵)↑2)))) |
12 | 7, 11 | eqeq12d 2625 |
. 2
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((((normℎ‘(𝐴 −ℎ 𝐵))↑2) +
((normℎ‘(𝐴 +ℎ 𝐵))↑2)) = ((2 ·
((normℎ‘𝐴)↑2)) + (2 ·
((normℎ‘𝐵)↑2))) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2)) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘𝐵)↑2))))) |
13 | | oveq2 6557 |
. . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
14 | 13 | fveq2d 6107 |
. . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
15 | 14 | oveq1d 6564 |
. . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) =
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2)) |
16 | | oveq2 6557 |
. . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
+ℎ 𝐵) =
(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
+ℎ if(𝐵
∈ ℋ, 𝐵,
0ℎ))) |
17 | 16 | fveq2d 6107 |
. . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))) |
18 | 17 | oveq1d 6564 |
. . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2) =
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2)) |
19 | 15, 18 | oveq12d 6567 |
. . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2)) =
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2))) |
20 | | fveq2 6103 |
. . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘𝐵) = (normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))) |
21 | 20 | oveq1d 6564 |
. . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘𝐵)↑2) =
((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2)) |
22 | 21 | oveq2d 6565 |
. . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (2 ·
((normℎ‘𝐵)↑2)) = (2 ·
((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2))) |
23 | 22 | oveq2d 6565 |
. . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘𝐵)↑2))) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2)))) |
24 | 19, 23 | eqeq12d 2625 |
. 2
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2)) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘𝐵)↑2))) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2)) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2))))) |
25 | | ifhvhv0 27263 |
. . 3
⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈
ℋ |
26 | | ifhvhv0 27263 |
. . 3
⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈
ℋ |
27 | 25, 26 | normpari 27395 |
. 2
⊢
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2)) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2))) |
28 | 12, 24, 27 | dedth2h 4090 |
1
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) →
(((normℎ‘(𝐴 −ℎ 𝐵))↑2) +
((normℎ‘(𝐴 +ℎ 𝐵))↑2)) = ((2 ·
((normℎ‘𝐴)↑2)) + (2 ·
((normℎ‘𝐵)↑2)))) |