HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem0 Structured version   Visualization version   GIF version

Theorem normlem0 27350
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 7-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
Assertion
Ref Expression
normlem0 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem0
StepHypRef Expression
1 normlem1.2 . . . . 5 𝐹 ∈ ℋ
2 normlem1.1 . . . . . 6 𝑆 ∈ ℂ
3 normlem1.3 . . . . . 6 𝐺 ∈ ℋ
42, 3hvmulcli 27255 . . . . 5 (𝑆 · 𝐺) ∈ ℋ
51, 4hvsubvali 27261 . . . 4 (𝐹 (𝑆 · 𝐺)) = (𝐹 + (-1 · (𝑆 · 𝐺)))
62mulm1i 10354 . . . . . . 7 (-1 · 𝑆) = -𝑆
76oveq1i 6559 . . . . . 6 ((-1 · 𝑆) · 𝐺) = (-𝑆 · 𝐺)
8 neg1cn 11001 . . . . . . 7 -1 ∈ ℂ
98, 2, 3hvmulassi 27287 . . . . . 6 ((-1 · 𝑆) · 𝐺) = (-1 · (𝑆 · 𝐺))
107, 9eqtr3i 2634 . . . . 5 (-𝑆 · 𝐺) = (-1 · (𝑆 · 𝐺))
1110oveq2i 6560 . . . 4 (𝐹 + (-𝑆 · 𝐺)) = (𝐹 + (-1 · (𝑆 · 𝐺)))
125, 11eqtr4i 2635 . . 3 (𝐹 (𝑆 · 𝐺)) = (𝐹 + (-𝑆 · 𝐺))
1312, 12oveq12i 6561 . 2 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺)))
142negcli 10228 . . . 4 -𝑆 ∈ ℂ
1514, 3hvmulcli 27255 . . 3 (-𝑆 · 𝐺) ∈ ℋ
161, 15hvaddcli 27259 . . 3 (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ
17 ax-his2 27324 . . 3 ((𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ ∧ (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ) → ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺)))))
181, 15, 16, 17mp3an 1416 . 2 ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))))
19 his7 27331 . . . . 5 ((𝐹 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ) → (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺))))
201, 1, 15, 19mp3an 1416 . . . 4 (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺)))
21 his5 27327 . . . . . . 7 ((-𝑆 ∈ ℂ ∧ 𝐹 ∈ ℋ ∧ 𝐺 ∈ ℋ) → (𝐹 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐹 ·ih 𝐺)))
2214, 1, 3, 21mp3an 1416 . . . . . 6 (𝐹 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐹 ·ih 𝐺))
232cjnegi 13770 . . . . . . 7 (∗‘-𝑆) = -(∗‘𝑆)
2423oveq1i 6559 . . . . . 6 ((∗‘-𝑆) · (𝐹 ·ih 𝐺)) = (-(∗‘𝑆) · (𝐹 ·ih 𝐺))
2522, 24eqtri 2632 . . . . 5 (𝐹 ·ih (-𝑆 · 𝐺)) = (-(∗‘𝑆) · (𝐹 ·ih 𝐺))
2625oveq2i 6560 . . . 4 ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺)))
2720, 26eqtri 2632 . . 3 (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺)))
28 ax-his3 27325 . . . . 5 ((-𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ) → ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺)))))
2914, 3, 16, 28mp3an 1416 . . . 4 ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))))
30 his7 27331 . . . . . . 7 ((𝐺 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ) → (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺))))
313, 1, 15, 30mp3an 1416 . . . . . 6 (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺)))
32 his5 27327 . . . . . . . 8 ((-𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ 𝐺 ∈ ℋ) → (𝐺 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3314, 3, 3, 32mp3an 1416 . . . . . . 7 (𝐺 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐺 ·ih 𝐺))
3433oveq2i 6560 . . . . . 6 ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3531, 34eqtri 2632 . . . . 5 (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3635oveq2i 6560 . . . 4 (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺)))) = (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺))))
373, 1hicli 27322 . . . . . 6 (𝐺 ·ih 𝐹) ∈ ℂ
3814cjcli 13757 . . . . . . 7 (∗‘-𝑆) ∈ ℂ
393, 3hicli 27322 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℂ
4038, 39mulcli 9924 . . . . . 6 ((∗‘-𝑆) · (𝐺 ·ih 𝐺)) ∈ ℂ
4114, 37, 40adddii 9929 . . . . 5 (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺))))
4214, 38, 39mulassi 9928 . . . . . . 7 ((-𝑆 · (∗‘-𝑆)) · (𝐺 ·ih 𝐺)) = (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
4323oveq2i 6560 . . . . . . . . 9 (-𝑆 · (∗‘-𝑆)) = (-𝑆 · -(∗‘𝑆))
442cjcli 13757 . . . . . . . . . 10 (∗‘𝑆) ∈ ℂ
452, 44mul2negi 10357 . . . . . . . . 9 (-𝑆 · -(∗‘𝑆)) = (𝑆 · (∗‘𝑆))
4643, 45eqtri 2632 . . . . . . . 8 (-𝑆 · (∗‘-𝑆)) = (𝑆 · (∗‘𝑆))
4746oveq1i 6559 . . . . . . 7 ((-𝑆 · (∗‘-𝑆)) · (𝐺 ·ih 𝐺)) = ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))
4842, 47eqtr3i 2634 . . . . . 6 (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺))) = ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))
4948oveq2i 6560 . . . . 5 ((-𝑆 · (𝐺 ·ih 𝐹)) + (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5041, 49eqtri 2632 . . . 4 (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5129, 36, 503eqtri 2636 . . 3 ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5227, 51oveq12i 6561 . 2 ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺)))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))
5313, 18, 523eqtri 2636 1 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  -cneg 10146  ccj 13684  chil 27160   + cva 27161   · csm 27162   ·ih csp 27163   cmv 27166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hfvadd 27241  ax-hfvmul 27246  ax-hvmulass 27248  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689  df-hvsub 27212
This theorem is referenced by:  normlem1  27351
  Copyright terms: Public domain W3C validator