Proof of Theorem norm3lemt
Step | Hyp | Ref
| Expression |
1 | | oveq1 6556 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 −ℎ
𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) |
2 | 1 | fveq2d 6107 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 −ℎ 𝐶)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶))) |
3 | 2 | breq1d 4593 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2))) |
4 | 3 | anbi1d 737 |
. . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)))) |
5 | | oveq1 6556 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 −ℎ
𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) |
6 | 5 | fveq2d 6107 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 −ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))) |
7 | 6 | breq1d 4593 |
. . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷 ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷)) |
8 | 4, 7 | imbi12d 333 |
. 2
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷))) |
9 | | oveq2 6557 |
. . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐶 −ℎ
𝐵) = (𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵,
0ℎ))) |
10 | 9 | fveq2d 6107 |
. . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(𝐶 −ℎ 𝐵)) =
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))) |
11 | 10 | breq1d 4593 |
. . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2) ↔
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2))) |
12 | 11 | anbi2d 736 |
. . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)))) |
13 | | oveq2 6557 |
. . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
14 | 13 | fveq2d 6107 |
. . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
15 | 14 | breq1d 4593 |
. . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷 ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷)) |
16 | 12, 15 | imbi12d 333 |
. 2
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷))) |
17 | | oveq2 6557 |
. . . . . 6
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) |
18 | 17 | fveq2d 6107 |
. . . . 5
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)))) |
19 | 18 | breq1d 4593 |
. . . 4
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2))) |
20 | | oveq1 6556 |
. . . . . 6
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (𝐶 −ℎ
if(𝐵 ∈ ℋ, 𝐵, 0ℎ)) =
(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
21 | 20 | fveq2d 6107 |
. . . . 5
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) =
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
22 | 21 | breq1d 4593 |
. . . 4
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
((normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2) ↔
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2))) |
23 | 19, 22 | anbi12d 743 |
. . 3
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)))) |
24 | 23 | imbi1d 330 |
. 2
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷))) |
25 | | oveq1 6556 |
. . . . 5
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → (𝐷 / 2) = (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) |
26 | 25 | breq2d 4595 |
. . . 4
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))) |
27 | 25 | breq2d 4595 |
. . . 4
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2) ↔
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))) |
28 | 26, 27 | anbi12d 743 |
. . 3
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)))) |
29 | | breq2 4587 |
. . 3
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷 ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < if(𝐷 ∈ ℝ, 𝐷, 2))) |
30 | 28, 29 | imbi12d 333 |
. 2
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < if(𝐷 ∈ ℝ, 𝐷, 2)))) |
31 | | ifhvhv0 27263 |
. . 3
⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈
ℋ |
32 | | ifhvhv0 27263 |
. . 3
⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈
ℋ |
33 | | ifhvhv0 27263 |
. . 3
⊢ if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ∈
ℋ |
34 | | 2re 10967 |
. . . 4
⊢ 2 ∈
ℝ |
35 | 34 | elimel 4100 |
. . 3
⊢ if(𝐷 ∈ ℝ, 𝐷, 2) ∈
ℝ |
36 | 31, 32, 33, 35 | norm3lem 27390 |
. 2
⊢
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < if(𝐷 ∈ ℝ, 𝐷, 2)) |
37 | 8, 16, 24, 30, 36 | dedth4h 4092 |
1
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℝ)) →
(((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷)) |