MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nonsq Structured version   Visualization version   GIF version

Theorem nonsq 15305
Description: Any integer strictly between two adjacent squares has an irrational square root. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
nonsq (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ)

Proof of Theorem nonsq
StepHypRef Expression
1 nn0z 11277 . . . 4 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
21ad2antlr 759 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℤ)
3 simprl 790 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵↑2) < 𝐴)
4 nn0re 11178 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
54ad2antrr 758 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℝ)
65recnd 9947 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℂ)
76sqsqrtd 14026 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴)↑2) = 𝐴)
83, 7breqtrrd 4611 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵↑2) < ((√‘𝐴)↑2))
9 nn0re 11178 . . . . . 6 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
109ad2antlr 759 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℝ)
11 nn0ge0 11195 . . . . . . 7 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
1211ad2antrr 758 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ 𝐴)
135, 12resqrtcld 14004 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (√‘𝐴) ∈ ℝ)
14 nn0ge0 11195 . . . . . 6 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
1514ad2antlr 759 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ 𝐵)
165, 12sqrtge0d 14007 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ (√‘𝐴))
1710, 13, 15, 16lt2sqd 12905 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵 < (√‘𝐴) ↔ (𝐵↑2) < ((√‘𝐴)↑2)))
188, 17mpbird 246 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐵 < (√‘𝐴))
19 simprr 792 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐴 < ((𝐵 + 1)↑2))
207, 19eqbrtrd 4605 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴)↑2) < ((𝐵 + 1)↑2))
21 peano2re 10088 . . . . . 6 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
2210, 21syl 17 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵 + 1) ∈ ℝ)
23 peano2nn0 11210 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
24 nn0ge0 11195 . . . . . . 7 ((𝐵 + 1) ∈ ℕ0 → 0 ≤ (𝐵 + 1))
2523, 24syl 17 . . . . . 6 (𝐵 ∈ ℕ0 → 0 ≤ (𝐵 + 1))
2625ad2antlr 759 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ (𝐵 + 1))
2713, 22, 16, 26lt2sqd 12905 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴) < (𝐵 + 1) ↔ ((√‘𝐴)↑2) < ((𝐵 + 1)↑2)))
2820, 27mpbird 246 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (√‘𝐴) < (𝐵 + 1))
29 btwnnz 11329 . . 3 ((𝐵 ∈ ℤ ∧ 𝐵 < (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)) → ¬ (√‘𝐴) ∈ ℤ)
302, 18, 28, 29syl3anc 1318 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℤ)
31 nn0z 11277 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
3231ad2antrr 758 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℤ)
33 zsqrtelqelz 15304 . . . 4 ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ)
3433ex 449 . . 3 (𝐴 ∈ ℤ → ((√‘𝐴) ∈ ℚ → (√‘𝐴) ∈ ℤ))
3532, 34syl 17 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴) ∈ ℚ → (√‘𝐴) ∈ ℤ))
3630, 35mtod 188 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  2c2 10947  0cn0 11169  cz 11254  cq 11664  cexp 12722  csqrt 13821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282
This theorem is referenced by:  rmspecsqrtnq  36488  rmspecsqrtnqOLD  36489
  Copyright terms: Public domain W3C validator