Proof of Theorem nobndlem6
Step | Hyp | Ref
| Expression |
1 | | bdayelon 31079 |
. . . . 5
⊢ ( bday ‘𝐴) ∈ On |
2 | | ssel2 3563 |
. . . . . 6
⊢ ((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) → 𝐴 ∈ No
) |
3 | | nobndlem6.1 |
. . . . . . . 8
⊢ 𝑋 ∈ {1𝑜,
2𝑜} |
4 | 3 | nosgnn0i 31056 |
. . . . . . 7
⊢ ∅
≠ 𝑋 |
5 | | fvnobday 31081 |
. . . . . . . 8
⊢ (𝐴 ∈
No → (𝐴‘( bday
‘𝐴)) =
∅) |
6 | 5 | neeq1d 2841 |
. . . . . . 7
⊢ (𝐴 ∈
No → ((𝐴‘( bday
‘𝐴)) ≠
𝑋 ↔ ∅ ≠ 𝑋)) |
7 | 4, 6 | mpbiri 247 |
. . . . . 6
⊢ (𝐴 ∈
No → (𝐴‘( bday
‘𝐴)) ≠
𝑋) |
8 | 2, 7 | syl 17 |
. . . . 5
⊢ ((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) → (𝐴‘(
bday ‘𝐴)) ≠
𝑋) |
9 | | fveq2 6103 |
. . . . . . 7
⊢ (𝑥 = ( bday
‘𝐴) →
(𝐴‘𝑥) = (𝐴‘( bday
‘𝐴))) |
10 | 9 | neeq1d 2841 |
. . . . . 6
⊢ (𝑥 = ( bday
‘𝐴) →
((𝐴‘𝑥) ≠ 𝑋 ↔ (𝐴‘( bday
‘𝐴)) ≠
𝑋)) |
11 | 10 | rspcev 3282 |
. . . . 5
⊢ ((( bday ‘𝐴) ∈ On ∧ (𝐴‘( bday
‘𝐴)) ≠
𝑋) → ∃𝑥 ∈ On (𝐴‘𝑥) ≠ 𝑋) |
12 | 1, 8, 11 | sylancr 694 |
. . . 4
⊢ ((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) → ∃𝑥 ∈ On (𝐴‘𝑥) ≠ 𝑋) |
13 | | onintrab2 6894 |
. . . 4
⊢
(∃𝑥 ∈ On
(𝐴‘𝑥) ≠ 𝑋 ↔ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ On) |
14 | 12, 13 | sylib 207 |
. . 3
⊢ ((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) → ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ On) |
15 | | fveq1 6102 |
. . . . . . . . 9
⊢ (𝑛 = 𝐴 → (𝑛‘𝑏) = (𝐴‘𝑏)) |
16 | 15 | neeq1d 2841 |
. . . . . . . 8
⊢ (𝑛 = 𝐴 → ((𝑛‘𝑏) ≠ 𝑋 ↔ (𝐴‘𝑏) ≠ 𝑋)) |
17 | 16 | rexbidv 3034 |
. . . . . . 7
⊢ (𝑛 = 𝐴 → (∃𝑏 ∈ 𝑎 (𝑛‘𝑏) ≠ 𝑋 ↔ ∃𝑏 ∈ 𝑎 (𝐴‘𝑏) ≠ 𝑋)) |
18 | 17 | rspcv 3278 |
. . . . . 6
⊢ (𝐴 ∈ 𝐹 → (∀𝑛 ∈ 𝐹 ∃𝑏 ∈ 𝑎 (𝑛‘𝑏) ≠ 𝑋 → ∃𝑏 ∈ 𝑎 (𝐴‘𝑏) ≠ 𝑋)) |
19 | 18 | ad2antlr 759 |
. . . . 5
⊢ (((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) ∧ 𝑎 ∈ On) → (∀𝑛 ∈ 𝐹 ∃𝑏 ∈ 𝑎 (𝑛‘𝑏) ≠ 𝑋 → ∃𝑏 ∈ 𝑎 (𝐴‘𝑏) ≠ 𝑋)) |
20 | 14 | ad2antrr 758 |
. . . . . . 7
⊢ ((((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) ∧ 𝑎 ∈ On) ∧ (𝑏 ∈ 𝑎 ∧ (𝐴‘𝑏) ≠ 𝑋)) → ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ On) |
21 | | simplr 788 |
. . . . . . 7
⊢ ((((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) ∧ 𝑎 ∈ On) ∧ (𝑏 ∈ 𝑎 ∧ (𝐴‘𝑏) ≠ 𝑋)) → 𝑎 ∈ On) |
22 | | onelon 5665 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ 𝑎) → 𝑏 ∈ On) |
23 | 22 | anim1i 590 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ 𝑎) ∧ (𝐴‘𝑏) ≠ 𝑋) → (𝑏 ∈ On ∧ (𝐴‘𝑏) ≠ 𝑋)) |
24 | 23 | anasss 677 |
. . . . . . . . 9
⊢ ((𝑎 ∈ On ∧ (𝑏 ∈ 𝑎 ∧ (𝐴‘𝑏) ≠ 𝑋)) → (𝑏 ∈ On ∧ (𝐴‘𝑏) ≠ 𝑋)) |
25 | | fveq2 6103 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑏 → (𝐴‘𝑥) = (𝐴‘𝑏)) |
26 | 25 | neeq1d 2841 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑏 → ((𝐴‘𝑥) ≠ 𝑋 ↔ (𝐴‘𝑏) ≠ 𝑋)) |
27 | 26 | intminss 4438 |
. . . . . . . . 9
⊢ ((𝑏 ∈ On ∧ (𝐴‘𝑏) ≠ 𝑋) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ⊆ 𝑏) |
28 | 24, 27 | syl 17 |
. . . . . . . 8
⊢ ((𝑎 ∈ On ∧ (𝑏 ∈ 𝑎 ∧ (𝐴‘𝑏) ≠ 𝑋)) → ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ⊆ 𝑏) |
29 | 28 | adantll 746 |
. . . . . . 7
⊢ ((((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) ∧ 𝑎 ∈ On) ∧ (𝑏 ∈ 𝑎 ∧ (𝐴‘𝑏) ≠ 𝑋)) → ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ⊆ 𝑏) |
30 | | simprl 790 |
. . . . . . 7
⊢ ((((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) ∧ 𝑎 ∈ On) ∧ (𝑏 ∈ 𝑎 ∧ (𝐴‘𝑏) ≠ 𝑋)) → 𝑏 ∈ 𝑎) |
31 | | ontr2 5689 |
. . . . . . . 8
⊢ ((∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ On ∧ 𝑎 ∈ On) → ((∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ⊆ 𝑏 ∧ 𝑏 ∈ 𝑎) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ 𝑎)) |
32 | 31 | imp 444 |
. . . . . . 7
⊢ (((∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ On ∧ 𝑎 ∈ On) ∧ (∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ⊆ 𝑏 ∧ 𝑏 ∈ 𝑎)) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ 𝑎) |
33 | 20, 21, 29, 30, 32 | syl22anc 1319 |
. . . . . 6
⊢ ((((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) ∧ 𝑎 ∈ On) ∧ (𝑏 ∈ 𝑎 ∧ (𝐴‘𝑏) ≠ 𝑋)) → ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ 𝑎) |
34 | 33 | rexlimdvaa 3014 |
. . . . 5
⊢ (((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) ∧ 𝑎 ∈ On) → (∃𝑏 ∈ 𝑎 (𝐴‘𝑏) ≠ 𝑋 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ 𝑎)) |
35 | 19, 34 | syld 46 |
. . . 4
⊢ (((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) ∧ 𝑎 ∈ On) → (∀𝑛 ∈ 𝐹 ∃𝑏 ∈ 𝑎 (𝑛‘𝑏) ≠ 𝑋 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ 𝑎)) |
36 | 35 | ralrimiva 2949 |
. . 3
⊢ ((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) → ∀𝑎 ∈ On (∀𝑛 ∈ 𝐹 ∃𝑏 ∈ 𝑎 (𝑛‘𝑏) ≠ 𝑋 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ 𝑎)) |
37 | | elintrabg 4424 |
. . . 4
⊢ (∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ On → (∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ ∩ {𝑎 ∈ On ∣ ∀𝑛 ∈ 𝐹 ∃𝑏 ∈ 𝑎 (𝑛‘𝑏) ≠ 𝑋} ↔ ∀𝑎 ∈ On (∀𝑛 ∈ 𝐹 ∃𝑏 ∈ 𝑎 (𝑛‘𝑏) ≠ 𝑋 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ 𝑎))) |
38 | 37 | biimpar 501 |
. . 3
⊢ ((∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ On ∧ ∀𝑎 ∈ On (∀𝑛 ∈ 𝐹 ∃𝑏 ∈ 𝑎 (𝑛‘𝑏) ≠ 𝑋 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ 𝑎)) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ ∩ {𝑎 ∈ On ∣ ∀𝑛 ∈ 𝐹 ∃𝑏 ∈ 𝑎 (𝑛‘𝑏) ≠ 𝑋}) |
39 | 14, 36, 38 | syl2anc 691 |
. 2
⊢ ((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) → ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ ∩ {𝑎 ∈ On ∣ ∀𝑛 ∈ 𝐹 ∃𝑏 ∈ 𝑎 (𝑛‘𝑏) ≠ 𝑋}) |
40 | | nobndlem6.2 |
. 2
⊢ 𝐶 = ∩
{𝑎 ∈ On ∣
∀𝑛 ∈ 𝐹 ∃𝑏 ∈ 𝑎 (𝑛‘𝑏) ≠ 𝑋} |
41 | 39, 40 | syl6eleqr 2699 |
1
⊢ ((𝐹 ⊆
No ∧ 𝐴 ∈
𝐹) → ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ 𝑋} ∈ 𝐶) |