Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nobndlem6 Structured version   Visualization version   GIF version

Theorem nobndlem6 31096
Description: Lemma for nobndup 31099 and nobnddown 31100. Given an element 𝐴 of 𝐹, then the first position where it differs from 𝑋 is strictly less than 𝐶. (Contributed by Scott Fenton, 3-Aug-2011.)
Hypotheses
Ref Expression
nobndlem6.1 𝑋 ∈ {1𝑜, 2𝑜}
nobndlem6.2 𝐶 = {𝑎 ∈ On ∣ ∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋}
Assertion
Ref Expression
nobndlem6 ((𝐹 No 𝐴𝐹) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ 𝐶)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥   𝐹,𝑎,𝑏   𝑋,𝑎,𝑏,𝑥   𝑛,𝑋,𝑎,𝑏   𝐴,𝑛   𝑛,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑛,𝑎,𝑏)   𝐹(𝑥)

Proof of Theorem nobndlem6
StepHypRef Expression
1 bdayelon 31079 . . . . 5 ( bday 𝐴) ∈ On
2 ssel2 3563 . . . . . 6 ((𝐹 No 𝐴𝐹) → 𝐴 No )
3 nobndlem6.1 . . . . . . . 8 𝑋 ∈ {1𝑜, 2𝑜}
43nosgnn0i 31056 . . . . . . 7 ∅ ≠ 𝑋
5 fvnobday 31081 . . . . . . . 8 (𝐴 No → (𝐴‘( bday 𝐴)) = ∅)
65neeq1d 2841 . . . . . . 7 (𝐴 No → ((𝐴‘( bday 𝐴)) ≠ 𝑋 ↔ ∅ ≠ 𝑋))
74, 6mpbiri 247 . . . . . 6 (𝐴 No → (𝐴‘( bday 𝐴)) ≠ 𝑋)
82, 7syl 17 . . . . 5 ((𝐹 No 𝐴𝐹) → (𝐴‘( bday 𝐴)) ≠ 𝑋)
9 fveq2 6103 . . . . . . 7 (𝑥 = ( bday 𝐴) → (𝐴𝑥) = (𝐴‘( bday 𝐴)))
109neeq1d 2841 . . . . . 6 (𝑥 = ( bday 𝐴) → ((𝐴𝑥) ≠ 𝑋 ↔ (𝐴‘( bday 𝐴)) ≠ 𝑋))
1110rspcev 3282 . . . . 5 ((( bday 𝐴) ∈ On ∧ (𝐴‘( bday 𝐴)) ≠ 𝑋) → ∃𝑥 ∈ On (𝐴𝑥) ≠ 𝑋)
121, 8, 11sylancr 694 . . . 4 ((𝐹 No 𝐴𝐹) → ∃𝑥 ∈ On (𝐴𝑥) ≠ 𝑋)
13 onintrab2 6894 . . . 4 (∃𝑥 ∈ On (𝐴𝑥) ≠ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ On)
1412, 13sylib 207 . . 3 ((𝐹 No 𝐴𝐹) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ On)
15 fveq1 6102 . . . . . . . . 9 (𝑛 = 𝐴 → (𝑛𝑏) = (𝐴𝑏))
1615neeq1d 2841 . . . . . . . 8 (𝑛 = 𝐴 → ((𝑛𝑏) ≠ 𝑋 ↔ (𝐴𝑏) ≠ 𝑋))
1716rexbidv 3034 . . . . . . 7 (𝑛 = 𝐴 → (∃𝑏𝑎 (𝑛𝑏) ≠ 𝑋 ↔ ∃𝑏𝑎 (𝐴𝑏) ≠ 𝑋))
1817rspcv 3278 . . . . . 6 (𝐴𝐹 → (∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋 → ∃𝑏𝑎 (𝐴𝑏) ≠ 𝑋))
1918ad2antlr 759 . . . . 5 (((𝐹 No 𝐴𝐹) ∧ 𝑎 ∈ On) → (∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋 → ∃𝑏𝑎 (𝐴𝑏) ≠ 𝑋))
2014ad2antrr 758 . . . . . . 7 ((((𝐹 No 𝐴𝐹) ∧ 𝑎 ∈ On) ∧ (𝑏𝑎 ∧ (𝐴𝑏) ≠ 𝑋)) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ On)
21 simplr 788 . . . . . . 7 ((((𝐹 No 𝐴𝐹) ∧ 𝑎 ∈ On) ∧ (𝑏𝑎 ∧ (𝐴𝑏) ≠ 𝑋)) → 𝑎 ∈ On)
22 onelon 5665 . . . . . . . . . . 11 ((𝑎 ∈ On ∧ 𝑏𝑎) → 𝑏 ∈ On)
2322anim1i 590 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏𝑎) ∧ (𝐴𝑏) ≠ 𝑋) → (𝑏 ∈ On ∧ (𝐴𝑏) ≠ 𝑋))
2423anasss 677 . . . . . . . . 9 ((𝑎 ∈ On ∧ (𝑏𝑎 ∧ (𝐴𝑏) ≠ 𝑋)) → (𝑏 ∈ On ∧ (𝐴𝑏) ≠ 𝑋))
25 fveq2 6103 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐴𝑥) = (𝐴𝑏))
2625neeq1d 2841 . . . . . . . . . 10 (𝑥 = 𝑏 → ((𝐴𝑥) ≠ 𝑋 ↔ (𝐴𝑏) ≠ 𝑋))
2726intminss 4438 . . . . . . . . 9 ((𝑏 ∈ On ∧ (𝐴𝑏) ≠ 𝑋) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ⊆ 𝑏)
2824, 27syl 17 . . . . . . . 8 ((𝑎 ∈ On ∧ (𝑏𝑎 ∧ (𝐴𝑏) ≠ 𝑋)) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ⊆ 𝑏)
2928adantll 746 . . . . . . 7 ((((𝐹 No 𝐴𝐹) ∧ 𝑎 ∈ On) ∧ (𝑏𝑎 ∧ (𝐴𝑏) ≠ 𝑋)) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ⊆ 𝑏)
30 simprl 790 . . . . . . 7 ((((𝐹 No 𝐴𝐹) ∧ 𝑎 ∈ On) ∧ (𝑏𝑎 ∧ (𝐴𝑏) ≠ 𝑋)) → 𝑏𝑎)
31 ontr2 5689 . . . . . . . 8 (( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ On ∧ 𝑎 ∈ On) → (( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ⊆ 𝑏𝑏𝑎) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ 𝑎))
3231imp 444 . . . . . . 7 ((( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ On ∧ 𝑎 ∈ On) ∧ ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ⊆ 𝑏𝑏𝑎)) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ 𝑎)
3320, 21, 29, 30, 32syl22anc 1319 . . . . . 6 ((((𝐹 No 𝐴𝐹) ∧ 𝑎 ∈ On) ∧ (𝑏𝑎 ∧ (𝐴𝑏) ≠ 𝑋)) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ 𝑎)
3433rexlimdvaa 3014 . . . . 5 (((𝐹 No 𝐴𝐹) ∧ 𝑎 ∈ On) → (∃𝑏𝑎 (𝐴𝑏) ≠ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ 𝑎))
3519, 34syld 46 . . . 4 (((𝐹 No 𝐴𝐹) ∧ 𝑎 ∈ On) → (∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ 𝑎))
3635ralrimiva 2949 . . 3 ((𝐹 No 𝐴𝐹) → ∀𝑎 ∈ On (∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ 𝑎))
37 elintrabg 4424 . . . 4 ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ On → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ {𝑎 ∈ On ∣ ∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋} ↔ ∀𝑎 ∈ On (∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ 𝑎)))
3837biimpar 501 . . 3 (( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ On ∧ ∀𝑎 ∈ On (∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ 𝑎)) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ {𝑎 ∈ On ∣ ∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋})
3914, 36, 38syl2anc 691 . 2 ((𝐹 No 𝐴𝐹) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ {𝑎 ∈ On ∣ ∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋})
40 nobndlem6.2 . 2 𝐶 = {𝑎 ∈ On ∣ ∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋}
4139, 40syl6eleqr 2699 1 ((𝐹 No 𝐴𝐹) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ 𝑋} ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  wss 3540  c0 3874  {cpr 4127   cint 4410  Oncon0 5640  cfv 5804  1𝑜c1o 7440  2𝑜c2o 7441   No csur 31037   bday cbday 31039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1o 7447  df-2o 7448  df-no 31040  df-bday 31042
This theorem is referenced by:  nobndlem7  31097  nobndup  31099  nobnddown  31100
  Copyright terms: Public domain W3C validator