Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnwof | Structured version Visualization version GIF version |
Description: Well-ordering principle: any nonempty set of positive integers has a least element. This version allows 𝑥 and 𝑦 to be present in 𝐴 as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nnwof.1 | ⊢ Ⅎ𝑥𝐴 |
nnwof.2 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
nnwof | ⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnwo 11629 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣) | |
2 | nfcv 2751 | . . 3 ⊢ Ⅎ𝑤𝐴 | |
3 | nnwof.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | nfv 1830 | . . . 4 ⊢ Ⅎ𝑥 𝑤 ≤ 𝑣 | |
5 | 3, 4 | nfral 2929 | . . 3 ⊢ Ⅎ𝑥∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 |
6 | nfv 1830 | . . 3 ⊢ Ⅎ𝑤∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 | |
7 | breq1 4586 | . . . . 5 ⊢ (𝑤 = 𝑥 → (𝑤 ≤ 𝑣 ↔ 𝑥 ≤ 𝑣)) | |
8 | 7 | ralbidv 2969 | . . . 4 ⊢ (𝑤 = 𝑥 → (∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∀𝑣 ∈ 𝐴 𝑥 ≤ 𝑣)) |
9 | nfcv 2751 | . . . . 5 ⊢ Ⅎ𝑣𝐴 | |
10 | nnwof.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
11 | nfv 1830 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ≤ 𝑣 | |
12 | nfv 1830 | . . . . 5 ⊢ Ⅎ𝑣 𝑥 ≤ 𝑦 | |
13 | breq2 4587 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑥 ≤ 𝑣 ↔ 𝑥 ≤ 𝑦)) | |
14 | 9, 10, 11, 12, 13 | cbvralf 3141 | . . . 4 ⊢ (∀𝑣 ∈ 𝐴 𝑥 ≤ 𝑣 ↔ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
15 | 8, 14 | syl6bb 275 | . . 3 ⊢ (𝑤 = 𝑥 → (∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
16 | 2, 3, 5, 6, 15 | cbvrexf 3142 | . 2 ⊢ (∃𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
17 | 1, 16 | sylib 207 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 Ⅎwnfc 2738 ≠ wne 2780 ∀wral 2896 ∃wrex 2897 ⊆ wss 3540 ∅c0 3874 class class class wbr 4583 ≤ cle 9954 ℕcn 10897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 |
This theorem is referenced by: nnwos 11631 |
Copyright terms: Public domain | W3C validator |