MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnnn0modprm0 Structured version   Visualization version   GIF version

Theorem nnnn0modprm0 15349
Description: For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.)
Assertion
Ref Expression
nnnn0modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem nnnn0modprm0
StepHypRef Expression
1 prmnn 15226 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21adantr 480 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℕ)
3 fzo0sn0fzo1 12424 . . . . 5 (𝑃 ∈ ℕ → (0..^𝑃) = ({0} ∪ (1..^𝑃)))
42, 3syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0..^𝑃) = ({0} ∪ (1..^𝑃)))
54eleq2d 2673 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ (0..^𝑃) ↔ 𝐼 ∈ ({0} ∪ (1..^𝑃))))
6 elun 3715 . . . . 5 (𝐼 ∈ ({0} ∪ (1..^𝑃)) ↔ (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑃)))
7 elsni 4142 . . . . . . 7 (𝐼 ∈ {0} → 𝐼 = 0)
8 lbfzo0 12375 . . . . . . . . . . . . 13 (0 ∈ (0..^𝑃) ↔ 𝑃 ∈ ℕ)
91, 8sylibr 223 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 0 ∈ (0..^𝑃))
109adantr 480 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 0 ∈ (0..^𝑃))
11 elfzoelz 12339 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
12 zcn 11259 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
13 mul02 10093 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℂ → (0 · 𝑁) = 0)
1413oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → (0 + (0 · 𝑁)) = (0 + 0))
15 00id 10090 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
1614, 15syl6eq 2660 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (0 + (0 · 𝑁)) = 0)
1711, 12, 163syl 18 . . . . . . . . . . . . . 14 (𝑁 ∈ (1..^𝑃) → (0 + (0 · 𝑁)) = 0)
1817adantl 481 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0 + (0 · 𝑁)) = 0)
1918oveq1d 6564 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((0 + (0 · 𝑁)) mod 𝑃) = (0 mod 𝑃))
20 nnrp 11718 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
21 0mod 12563 . . . . . . . . . . . . . 14 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
221, 20, 213syl 18 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (0 mod 𝑃) = 0)
2322adantr 480 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0 mod 𝑃) = 0)
2419, 23eqtrd 2644 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((0 + (0 · 𝑁)) mod 𝑃) = 0)
25 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑗 = 0 → (𝑗 · 𝑁) = (0 · 𝑁))
2625oveq2d 6565 . . . . . . . . . . . . . 14 (𝑗 = 0 → (0 + (𝑗 · 𝑁)) = (0 + (0 · 𝑁)))
2726oveq1d 6564 . . . . . . . . . . . . 13 (𝑗 = 0 → ((0 + (𝑗 · 𝑁)) mod 𝑃) = ((0 + (0 · 𝑁)) mod 𝑃))
2827eqeq1d 2612 . . . . . . . . . . . 12 (𝑗 = 0 → (((0 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (0 · 𝑁)) mod 𝑃) = 0))
2928rspcev 3282 . . . . . . . . . . 11 ((0 ∈ (0..^𝑃) ∧ ((0 + (0 · 𝑁)) mod 𝑃) = 0) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
3010, 24, 29syl2anc 691 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
3130adantl 481 . . . . . . . . 9 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
32 oveq1 6556 . . . . . . . . . . . . 13 (𝐼 = 0 → (𝐼 + (𝑗 · 𝑁)) = (0 + (𝑗 · 𝑁)))
3332oveq1d 6564 . . . . . . . . . . . 12 (𝐼 = 0 → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((0 + (𝑗 · 𝑁)) mod 𝑃))
3433eqeq1d 2612 . . . . . . . . . . 11 (𝐼 = 0 → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3534adantr 480 . . . . . . . . . 10 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3635rexbidv 3034 . . . . . . . . 9 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → (∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3731, 36mpbird 246 . . . . . . . 8 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
3837ex 449 . . . . . . 7 (𝐼 = 0 → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
397, 38syl 17 . . . . . 6 (𝐼 ∈ {0} → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
40 simpl 472 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℙ)
4140adantl 481 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝑃 ∈ ℙ)
42 simprr 792 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝑁 ∈ (1..^𝑃))
43 simpl 472 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝐼 ∈ (1..^𝑃))
44 modprm0 15348 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
4541, 42, 43, 44syl3anc 1318 . . . . . . 7 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
4645ex 449 . . . . . 6 (𝐼 ∈ (1..^𝑃) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
4739, 46jaoi 393 . . . . 5 ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
486, 47sylbi 206 . . . 4 (𝐼 ∈ ({0} ∪ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
4948com12 32 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ ({0} ∪ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
505, 49sylbid 229 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
51503impia 1253 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  cun 3538  {csn 4125  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cn 10897  cz 11254  +crp 11708  ..^cfzo 12334   mod cmo 12530  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309
This theorem is referenced by:  modprmn0modprm0  15350
  Copyright terms: Public domain W3C validator