Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nninfnub Structured version   Visualization version   GIF version

Theorem nninfnub 32717
 Description: An infinite set of positive integers is unbounded above. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
nninfnub ((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nninfnub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eq0 3888 . . . . . 6 ({𝑥𝐴𝐵 < 𝑥} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥})
2 breq2 4587 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐵 < 𝑥𝐵 < 𝑦))
32elrab 3331 . . . . . . . . . . 11 (𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} ↔ (𝑦𝐴𝐵 < 𝑦))
43notbii 309 . . . . . . . . . 10 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} ↔ ¬ (𝑦𝐴𝐵 < 𝑦))
5 imnan 437 . . . . . . . . . 10 ((𝑦𝐴 → ¬ 𝐵 < 𝑦) ↔ ¬ (𝑦𝐴𝐵 < 𝑦))
64, 5sylbb2 227 . . . . . . . . 9 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → (𝑦𝐴 → ¬ 𝐵 < 𝑦))
76alimi 1730 . . . . . . . 8 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → ∀𝑦(𝑦𝐴 → ¬ 𝐵 < 𝑦))
8 df-ral 2901 . . . . . . . 8 (∀𝑦𝐴 ¬ 𝐵 < 𝑦 ↔ ∀𝑦(𝑦𝐴 → ¬ 𝐵 < 𝑦))
97, 8sylibr 223 . . . . . . 7 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → ∀𝑦𝐴 ¬ 𝐵 < 𝑦)
10 ssel2 3563 . . . . . . . . . . . 12 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℕ)
1110nnred 10912 . . . . . . . . . . 11 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
1211adantlr 747 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
13 nnre 10904 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1413ad2antlr 759 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝐵 ∈ ℝ)
15 lenlt 9995 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦𝐵 ↔ ¬ 𝐵 < 𝑦))
1615biimprd 237 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝑦𝑦𝐵))
1712, 14, 16syl2anc 691 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (¬ 𝐵 < 𝑦𝑦𝐵))
1817ralimdva 2945 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 ¬ 𝐵 < 𝑦 → ∀𝑦𝐴 𝑦𝐵))
19 fzfi 12633 . . . . . . . . . 10 (0...𝐵) ∈ Fin
2010nnnn0d 11228 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℕ0)
2120adantlr 747 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝑦 ∈ ℕ0)
2221adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℕ0)
23 nnnn0 11176 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
2423ad3antlr 763 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝐵 ∈ ℕ0)
25 simpr 476 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦𝐵)
2622, 24, 253jca 1235 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵))
2726ex 449 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (𝑦𝐵 → (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵)))
28 elfz2nn0 12300 . . . . . . . . . . . . . 14 (𝑦 ∈ (0...𝐵) ↔ (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵))
2927, 28syl6ibr 241 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (𝑦𝐵𝑦 ∈ (0...𝐵)))
3029ralimdva 2945 . . . . . . . . . . . 12 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 𝑦𝐵 → ∀𝑦𝐴 𝑦 ∈ (0...𝐵)))
3130imp 444 . . . . . . . . . . 11 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → ∀𝑦𝐴 𝑦 ∈ (0...𝐵))
32 dfss3 3558 . . . . . . . . . . 11 (𝐴 ⊆ (0...𝐵) ↔ ∀𝑦𝐴 𝑦 ∈ (0...𝐵))
3331, 32sylibr 223 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → 𝐴 ⊆ (0...𝐵))
34 ssfi 8065 . . . . . . . . . 10 (((0...𝐵) ∈ Fin ∧ 𝐴 ⊆ (0...𝐵)) → 𝐴 ∈ Fin)
3519, 33, 34sylancr 694 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → 𝐴 ∈ Fin)
3635ex 449 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 𝑦𝐵𝐴 ∈ Fin))
3718, 36syld 46 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 ¬ 𝐵 < 𝑦𝐴 ∈ Fin))
389, 37syl5 33 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → 𝐴 ∈ Fin))
391, 38syl5bi 231 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ({𝑥𝐴𝐵 < 𝑥} = ∅ → 𝐴 ∈ Fin))
4039necon3bd 2796 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 𝐴 ∈ Fin → {𝑥𝐴𝐵 < 𝑥} ≠ ∅))
4140imp 444 . . 3 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
4241an32s 842 . 2 (((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
43423impa 1251 1 ((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  {crab 2900   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583  (class class class)co 6549  Fincfn 7841  ℝcr 9814  0cc0 9815   < clt 9953   ≤ cle 9954  ℕcn 10897  ℕ0cn0 11169  ...cfz 12197 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator