Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnindd Structured version   Visualization version   GIF version

Theorem nnindd 28953
 Description: Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
nnindd.1 (𝑥 = 1 → (𝜓𝜒))
nnindd.2 (𝑥 = 𝑦 → (𝜓𝜃))
nnindd.3 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
nnindd.4 (𝑥 = 𝐴 → (𝜓𝜂))
nnindd.5 (𝜑𝜒)
nnindd.6 (((𝜑𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
nnindd ((𝜑𝐴 ∈ ℕ) → 𝜂)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝜑   𝜓,𝑦   𝜒,𝑥   𝜂,𝑥   𝜃,𝑥   𝜏,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem nnindd
StepHypRef Expression
1 nnindd.1 . . . 4 (𝑥 = 1 → (𝜓𝜒))
21imbi2d 329 . . 3 (𝑥 = 1 → ((𝜑𝜓) ↔ (𝜑𝜒)))
3 nnindd.2 . . . 4 (𝑥 = 𝑦 → (𝜓𝜃))
43imbi2d 329 . . 3 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜃)))
5 nnindd.3 . . . 4 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
65imbi2d 329 . . 3 (𝑥 = (𝑦 + 1) → ((𝜑𝜓) ↔ (𝜑𝜏)))
7 nnindd.4 . . . 4 (𝑥 = 𝐴 → (𝜓𝜂))
87imbi2d 329 . . 3 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝜑𝜂)))
9 nnindd.5 . . 3 (𝜑𝜒)
10 nnindd.6 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏)
1110ex 449 . . . . 5 ((𝜑𝑦 ∈ ℕ) → (𝜃𝜏))
1211expcom 450 . . . 4 (𝑦 ∈ ℕ → (𝜑 → (𝜃𝜏)))
1312a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝜑𝜃) → (𝜑𝜏)))
142, 4, 6, 8, 9, 13nnind 10915 . 2 (𝐴 ∈ ℕ → (𝜑𝜂))
1514impcom 445 1 ((𝜑𝐴 ∈ ℕ) → 𝜂)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  (class class class)co 6549  1c1 9816   + caddc 9818  ℕcn 10897 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-1cn 9873 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-nn 10898 This theorem is referenced by:  fzto1st  29184  psgnfzto1st  29186  fiunelros  29564
 Copyright terms: Public domain W3C validator