Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndivlub Structured version   Visualization version   GIF version

Theorem nndivlub 31627
Description: A factor of a positive integer cannot exceed it. (Contributed by Jeff Hoffman, 17-Jun-2008.)
Assertion
Ref Expression
nndivlub ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵𝐴))

Proof of Theorem nndivlub
StepHypRef Expression
1 nnre 10904 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
2 nngt0 10926 . . 3 (𝐵 ∈ ℕ → 0 < 𝐵)
31, 2jca 553 . 2 (𝐵 ∈ ℕ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
4 nnre 10904 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
5 nngt0 10926 . . 3 (𝐴 ∈ ℕ → 0 < 𝐴)
64, 5jca 553 . 2 (𝐴 ∈ ℕ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
7 nnge1 10923 . . 3 ((𝐴 / 𝐵) ∈ ℕ → 1 ≤ (𝐴 / 𝐵))
8 lediv2 10792 . . . . 5 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵𝐴 ↔ (𝐴 / 𝐴) ≤ (𝐴 / 𝐵)))
983anidm23 1377 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵𝐴 ↔ (𝐴 / 𝐴) ≤ (𝐴 / 𝐵)))
10 recn 9905 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1110adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
12 gt0ne0 10372 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
13 divid 10593 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1)
1413breq1d 4593 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 / 𝐴) ≤ (𝐴 / 𝐵) ↔ 1 ≤ (𝐴 / 𝐵)))
1511, 12, 14syl2anc 691 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴 / 𝐴) ≤ (𝐴 / 𝐵) ↔ 1 ≤ (𝐴 / 𝐵)))
1615adantl 481 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴 / 𝐴) ≤ (𝐴 / 𝐵) ↔ 1 ≤ (𝐴 / 𝐵)))
179, 16bitrd 267 . . 3 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵𝐴 ↔ 1 ≤ (𝐴 / 𝐵)))
187, 17syl5ibr 235 . 2 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵𝐴))
193, 6, 18syl2anr 494 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   < clt 9953  cle 9954   / cdiv 10563  cn 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator