MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn2ge Structured version   Visualization version   GIF version

Theorem nn2ge 10922
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
nn2ge ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nn2ge
StepHypRef Expression
1 nnre 10904 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
21adantr 480 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
3 nnre 10904 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
43adantl 481 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
5 leid 10012 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵𝐵)
65biantrud 527 . . . . . 6 (𝐵 ∈ ℝ → (𝐴𝐵 ↔ (𝐴𝐵𝐵𝐵)))
76biimpa 500 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐵))
83, 7sylan 487 . . . 4 ((𝐵 ∈ ℕ ∧ 𝐴𝐵) → (𝐴𝐵𝐵𝐵))
9 breq2 4587 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
10 breq2 4587 . . . . . 6 (𝑥 = 𝐵 → (𝐵𝑥𝐵𝐵))
119, 10anbi12d 743 . . . . 5 (𝑥 = 𝐵 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐵𝐵𝐵)))
1211rspcev 3282 . . . 4 ((𝐵 ∈ ℕ ∧ (𝐴𝐵𝐵𝐵)) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
138, 12syldan 486 . . 3 ((𝐵 ∈ ℕ ∧ 𝐴𝐵) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
1413adantll 746 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴𝐵) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
15 leid 10012 . . . . . 6 (𝐴 ∈ ℝ → 𝐴𝐴)
1615anim1i 590 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵𝐴) → (𝐴𝐴𝐵𝐴))
171, 16sylan 487 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵𝐴) → (𝐴𝐴𝐵𝐴))
18 breq2 4587 . . . . . 6 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
19 breq2 4587 . . . . . 6 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
2018, 19anbi12d 743 . . . . 5 (𝑥 = 𝐴 → ((𝐴𝑥𝐵𝑥) ↔ (𝐴𝐴𝐵𝐴)))
2120rspcev 3282 . . . 4 ((𝐴 ∈ ℕ ∧ (𝐴𝐴𝐵𝐴)) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
2217, 21syldan 486 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵𝐴) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
2322adantlr 747 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐵𝐴) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
242, 4, 14, 23lecasei 10022 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4583  cr 9814  cle 9954  cn 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-nn 10898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator