Step | Hyp | Ref
| Expression |
1 | | eqeq2 2621 |
. . . 4
⊢ (𝑥 = 1 →
((#b‘𝑎) =
𝑥 ↔
(#b‘𝑎) =
1)) |
2 | | oveq2 6557 |
. . . . . . 7
⊢ (𝑥 = 1 → (0..^𝑥) = (0..^1)) |
3 | | fzo01 12417 |
. . . . . . 7
⊢ (0..^1) =
{0} |
4 | 2, 3 | syl6eq 2660 |
. . . . . 6
⊢ (𝑥 = 1 → (0..^𝑥) = {0}) |
5 | 4 | sumeq1d 14279 |
. . . . 5
⊢ (𝑥 = 1 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))) |
6 | 5 | eqeq2d 2620 |
. . . 4
⊢ (𝑥 = 1 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))) |
7 | 1, 6 | imbi12d 333 |
. . 3
⊢ (𝑥 = 1 →
(((#b‘𝑎) =
𝑥 → 𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b‘𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
8 | 7 | ralbidv 2969 |
. 2
⊢ (𝑥 = 1 → (∀𝑎 ∈ ℕ0
((#b‘𝑎) =
𝑥 → 𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0
((#b‘𝑎) =
1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
9 | | eqeq2 2621 |
. . . 4
⊢ (𝑥 = 𝑦 → ((#b‘𝑎) = 𝑥 ↔ (#b‘𝑎) = 𝑦)) |
10 | | oveq2 6557 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (0..^𝑥) = (0..^𝑦)) |
11 | 10 | sumeq1d 14279 |
. . . . 5
⊢ (𝑥 = 𝑦 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) |
12 | 11 | eqeq2d 2620 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))) |
13 | 9, 12 | imbi12d 333 |
. . 3
⊢ (𝑥 = 𝑦 → (((#b‘𝑎) = 𝑥 → 𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b‘𝑎) = 𝑦 → 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
14 | 13 | ralbidv 2969 |
. 2
⊢ (𝑥 = 𝑦 → (∀𝑎 ∈ ℕ0
((#b‘𝑎) =
𝑥 → 𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0
((#b‘𝑎) =
𝑦 → 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
15 | | eqeq2 2621 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((#b‘𝑎) = 𝑥 ↔ (#b‘𝑎) = (𝑦 + 1))) |
16 | | oveq2 6557 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (0..^𝑥) = (0..^(𝑦 + 1))) |
17 | 16 | sumeq1d 14279 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) |
18 | 17 | eqeq2d 2620 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))) |
19 | 15, 18 | imbi12d 333 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → (((#b‘𝑎) = 𝑥 → 𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
20 | 19 | ralbidv 2969 |
. 2
⊢ (𝑥 = (𝑦 + 1) → (∀𝑎 ∈ ℕ0
((#b‘𝑎) =
𝑥 → 𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0
((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
21 | | eqeq2 2621 |
. . . 4
⊢ (𝑥 = 𝐿 → ((#b‘𝑎) = 𝑥 ↔ (#b‘𝑎) = 𝐿)) |
22 | | oveq2 6557 |
. . . . . 6
⊢ (𝑥 = 𝐿 → (0..^𝑥) = (0..^𝐿)) |
23 | 22 | sumeq1d 14279 |
. . . . 5
⊢ (𝑥 = 𝐿 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))) |
24 | 23 | eqeq2d 2620 |
. . . 4
⊢ (𝑥 = 𝐿 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))) |
25 | 21, 24 | imbi12d 333 |
. . 3
⊢ (𝑥 = 𝐿 → (((#b‘𝑎) = 𝑥 → 𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b‘𝑎) = 𝐿 → 𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
26 | 25 | ralbidv 2969 |
. 2
⊢ (𝑥 = 𝐿 → (∀𝑎 ∈ ℕ0
((#b‘𝑎) =
𝑥 → 𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0
((#b‘𝑎) =
𝐿 → 𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
27 | | 0cnd 9912 |
. . . . . . . 8
⊢ (𝑎 ∈ ℕ0
→ 0 ∈ ℂ) |
28 | | 2nn 11062 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
29 | 28 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ0
→ 2 ∈ ℕ) |
30 | | 0zd 11266 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ0
→ 0 ∈ ℤ) |
31 | | nn0rp0 12150 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ0
→ 𝑎 ∈
(0[,)+∞)) |
32 | | digvalnn0 42191 |
. . . . . . . . . . 11
⊢ ((2
∈ ℕ ∧ 0 ∈ ℤ ∧ 𝑎 ∈ (0[,)+∞)) →
(0(digit‘2)𝑎) ∈
ℕ0) |
33 | 29, 30, 31, 32 | syl3anc 1318 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℕ0
→ (0(digit‘2)𝑎)
∈ ℕ0) |
34 | 33 | nn0cnd 11230 |
. . . . . . . . 9
⊢ (𝑎 ∈ ℕ0
→ (0(digit‘2)𝑎)
∈ ℂ) |
35 | | 1cnd 9935 |
. . . . . . . . 9
⊢ (𝑎 ∈ ℕ0
→ 1 ∈ ℂ) |
36 | 34, 35 | mulcld 9939 |
. . . . . . . 8
⊢ (𝑎 ∈ ℕ0
→ ((0(digit‘2)𝑎)
· 1) ∈ ℂ) |
37 | 27, 36 | jca 553 |
. . . . . . 7
⊢ (𝑎 ∈ ℕ0
→ (0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈
ℂ)) |
38 | 37 | adantr 480 |
. . . . . 6
⊢ ((𝑎 ∈ ℕ0
∧ (#b‘𝑎) = 1) → (0 ∈ ℂ ∧
((0(digit‘2)𝑎)
· 1) ∈ ℂ)) |
39 | | oveq1 6556 |
. . . . . . . 8
⊢ (𝑘 = 0 → (𝑘(digit‘2)𝑎) = (0(digit‘2)𝑎)) |
40 | | oveq2 6557 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (2↑𝑘) = (2↑0)) |
41 | | 2cn 10968 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
42 | | exp0 12726 |
. . . . . . . . . 10
⊢ (2 ∈
ℂ → (2↑0) = 1) |
43 | 41, 42 | ax-mp 5 |
. . . . . . . . 9
⊢
(2↑0) = 1 |
44 | 40, 43 | syl6eq 2660 |
. . . . . . . 8
⊢ (𝑘 = 0 → (2↑𝑘) = 1) |
45 | 39, 44 | oveq12d 6567 |
. . . . . . 7
⊢ (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1)) |
46 | 45 | sumsn 14319 |
. . . . . 6
⊢ ((0
∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ) →
Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1)) |
47 | 38, 46 | syl 17 |
. . . . 5
⊢ ((𝑎 ∈ ℕ0
∧ (#b‘𝑎) = 1) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1)) |
48 | 34 | adantr 480 |
. . . . . 6
⊢ ((𝑎 ∈ ℕ0
∧ (#b‘𝑎) = 1) → (0(digit‘2)𝑎) ∈
ℂ) |
49 | 48 | mulid1d 9936 |
. . . . 5
⊢ ((𝑎 ∈ ℕ0
∧ (#b‘𝑎) = 1) → ((0(digit‘2)𝑎) · 1) =
(0(digit‘2)𝑎)) |
50 | | blen1b 42180 |
. . . . . . . 8
⊢ (𝑎 ∈ ℕ0
→ ((#b‘𝑎) = 1 ↔ (𝑎 = 0 ∨ 𝑎 = 1))) |
51 | 50 | biimpa 500 |
. . . . . . 7
⊢ ((𝑎 ∈ ℕ0
∧ (#b‘𝑎) = 1) → (𝑎 = 0 ∨ 𝑎 = 1)) |
52 | | vex 3176 |
. . . . . . . 8
⊢ 𝑎 ∈ V |
53 | 52 | elpr 4146 |
. . . . . . 7
⊢ (𝑎 ∈ {0, 1} ↔ (𝑎 = 0 ∨ 𝑎 = 1)) |
54 | 51, 53 | sylibr 223 |
. . . . . 6
⊢ ((𝑎 ∈ ℕ0
∧ (#b‘𝑎) = 1) → 𝑎 ∈ {0, 1}) |
55 | | 0dig2pr01 42202 |
. . . . . 6
⊢ (𝑎 ∈ {0, 1} →
(0(digit‘2)𝑎) = 𝑎) |
56 | 54, 55 | syl 17 |
. . . . 5
⊢ ((𝑎 ∈ ℕ0
∧ (#b‘𝑎) = 1) → (0(digit‘2)𝑎) = 𝑎) |
57 | 47, 49, 56 | 3eqtrrd 2649 |
. . . 4
⊢ ((𝑎 ∈ ℕ0
∧ (#b‘𝑎) = 1) → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))) |
58 | 57 | ex 449 |
. . 3
⊢ (𝑎 ∈ ℕ0
→ ((#b‘𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))) |
59 | 58 | rgen 2906 |
. 2
⊢
∀𝑎 ∈
ℕ0 ((#b‘𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))) |
60 | | nn0sumshdiglem1 42213 |
. 2
⊢ (𝑦 ∈ ℕ →
(∀𝑎 ∈
ℕ0 ((#b‘𝑎) = 𝑦 → 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0
((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
61 | 8, 14, 20, 26, 59, 60 | nnind 10915 |
1
⊢ (𝐿 ∈ ℕ →
∀𝑎 ∈
ℕ0 ((#b‘𝑎) = 𝐿 → 𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))) |