Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglem2 Structured version   Visualization version   GIF version

Theorem nn0sumshdiglem2 42214
 Description: Lemma 2 for nn0sumshdig 42215. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglem2 (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
Distinct variable group:   𝑘,𝑎,𝐿

Proof of Theorem nn0sumshdiglem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2621 . . . 4 (𝑥 = 1 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 1))
2 oveq2 6557 . . . . . . 7 (𝑥 = 1 → (0..^𝑥) = (0..^1))
3 fzo01 12417 . . . . . . 7 (0..^1) = {0}
42, 3syl6eq 2660 . . . . . 6 (𝑥 = 1 → (0..^𝑥) = {0})
54sumeq1d 14279 . . . . 5 (𝑥 = 1 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
65eqeq2d 2620 . . . 4 (𝑥 = 1 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))))
71, 6imbi12d 333 . . 3 (𝑥 = 1 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
87ralbidv 2969 . 2 (𝑥 = 1 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
9 eqeq2 2621 . . . 4 (𝑥 = 𝑦 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 𝑦))
10 oveq2 6557 . . . . . 6 (𝑥 = 𝑦 → (0..^𝑥) = (0..^𝑦))
1110sumeq1d 14279 . . . . 5 (𝑥 = 𝑦 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
1211eqeq2d 2620 . . . 4 (𝑥 = 𝑦 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
139, 12imbi12d 333 . . 3 (𝑥 = 𝑦 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1413ralbidv 2969 . 2 (𝑥 = 𝑦 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
15 eqeq2 2621 . . . 4 (𝑥 = (𝑦 + 1) → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = (𝑦 + 1)))
16 oveq2 6557 . . . . . 6 (𝑥 = (𝑦 + 1) → (0..^𝑥) = (0..^(𝑦 + 1)))
1716sumeq1d 14279 . . . . 5 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))
1817eqeq2d 2620 . . . 4 (𝑥 = (𝑦 + 1) → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
1915, 18imbi12d 333 . . 3 (𝑥 = (𝑦 + 1) → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
2019ralbidv 2969 . 2 (𝑥 = (𝑦 + 1) → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
21 eqeq2 2621 . . . 4 (𝑥 = 𝐿 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 𝐿))
22 oveq2 6557 . . . . . 6 (𝑥 = 𝐿 → (0..^𝑥) = (0..^𝐿))
2322sumeq1d 14279 . . . . 5 (𝑥 = 𝐿 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
2423eqeq2d 2620 . . . 4 (𝑥 = 𝐿 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
2521, 24imbi12d 333 . . 3 (𝑥 = 𝐿 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
2625ralbidv 2969 . 2 (𝑥 = 𝐿 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
27 0cnd 9912 . . . . . . . 8 (𝑎 ∈ ℕ0 → 0 ∈ ℂ)
28 2nn 11062 . . . . . . . . . . . 12 2 ∈ ℕ
2928a1i 11 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → 2 ∈ ℕ)
30 0zd 11266 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → 0 ∈ ℤ)
31 nn0rp0 12150 . . . . . . . . . . 11 (𝑎 ∈ ℕ0𝑎 ∈ (0[,)+∞))
32 digvalnn0 42191 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 0 ∈ ℤ ∧ 𝑎 ∈ (0[,)+∞)) → (0(digit‘2)𝑎) ∈ ℕ0)
3329, 30, 31, 32syl3anc 1318 . . . . . . . . . 10 (𝑎 ∈ ℕ0 → (0(digit‘2)𝑎) ∈ ℕ0)
3433nn0cnd 11230 . . . . . . . . 9 (𝑎 ∈ ℕ0 → (0(digit‘2)𝑎) ∈ ℂ)
35 1cnd 9935 . . . . . . . . 9 (𝑎 ∈ ℕ0 → 1 ∈ ℂ)
3634, 35mulcld 9939 . . . . . . . 8 (𝑎 ∈ ℕ0 → ((0(digit‘2)𝑎) · 1) ∈ ℂ)
3727, 36jca 553 . . . . . . 7 (𝑎 ∈ ℕ0 → (0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ))
3837adantr 480 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ))
39 oveq1 6556 . . . . . . . 8 (𝑘 = 0 → (𝑘(digit‘2)𝑎) = (0(digit‘2)𝑎))
40 oveq2 6557 . . . . . . . . 9 (𝑘 = 0 → (2↑𝑘) = (2↑0))
41 2cn 10968 . . . . . . . . . 10 2 ∈ ℂ
42 exp0 12726 . . . . . . . . . 10 (2 ∈ ℂ → (2↑0) = 1)
4341, 42ax-mp 5 . . . . . . . . 9 (2↑0) = 1
4440, 43syl6eq 2660 . . . . . . . 8 (𝑘 = 0 → (2↑𝑘) = 1)
4539, 44oveq12d 6567 . . . . . . 7 (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4645sumsn 14319 . . . . . 6 ((0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4738, 46syl 17 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4834adantr 480 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0(digit‘2)𝑎) ∈ ℂ)
4948mulid1d 9936 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → ((0(digit‘2)𝑎) · 1) = (0(digit‘2)𝑎))
50 blen1b 42180 . . . . . . . 8 (𝑎 ∈ ℕ0 → ((#b𝑎) = 1 ↔ (𝑎 = 0 ∨ 𝑎 = 1)))
5150biimpa 500 . . . . . . 7 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (𝑎 = 0 ∨ 𝑎 = 1))
52 vex 3176 . . . . . . . 8 𝑎 ∈ V
5352elpr 4146 . . . . . . 7 (𝑎 ∈ {0, 1} ↔ (𝑎 = 0 ∨ 𝑎 = 1))
5451, 53sylibr 223 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → 𝑎 ∈ {0, 1})
55 0dig2pr01 42202 . . . . . 6 (𝑎 ∈ {0, 1} → (0(digit‘2)𝑎) = 𝑎)
5654, 55syl 17 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0(digit‘2)𝑎) = 𝑎)
5747, 49, 563eqtrrd 2649 . . . 4 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
5857ex 449 . . 3 (𝑎 ∈ ℕ0 → ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))))
5958rgen 2906 . 2 𝑎 ∈ ℕ0 ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
60 nn0sumshdiglem1 42213 . 2 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
618, 14, 20, 26, 59, 60nnind 10915 1 (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {csn 4125  {cpr 4127  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  [,)cico 12048  ..^cfzo 12334  ↑cexp 12722  Σcsu 14264  #bcblen 42161  digitcdig 42187 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-logb 24303  df-blen 42162  df-dig 42188 This theorem is referenced by:  nn0sumshdig  42215
 Copyright terms: Public domain W3C validator