Step | Hyp | Ref
| Expression |
1 | | fveq2 6103 |
. . . . 5
⊢ (𝑎 = 𝑥 → (#b‘𝑎) = (#b‘𝑥)) |
2 | 1 | eqeq1d 2612 |
. . . 4
⊢ (𝑎 = 𝑥 → ((#b‘𝑎) = 𝑦 ↔ (#b‘𝑥) = 𝑦)) |
3 | | id 22 |
. . . . 5
⊢ (𝑎 = 𝑥 → 𝑎 = 𝑥) |
4 | | oveq2 6557 |
. . . . . . 7
⊢ (𝑎 = 𝑥 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)𝑥)) |
5 | 4 | oveq1d 6564 |
. . . . . 6
⊢ (𝑎 = 𝑥 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)𝑥) · (2↑𝑘))) |
6 | 5 | sumeq2sdv 14282 |
. . . . 5
⊢ (𝑎 = 𝑥 → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) |
7 | 3, 6 | eqeq12d 2625 |
. . . 4
⊢ (𝑎 = 𝑥 → (𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) |
8 | 2, 7 | imbi12d 333 |
. . 3
⊢ (𝑎 = 𝑥 → (((#b‘𝑎) = 𝑦 → 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))))) |
9 | 8 | cbvralv 3147 |
. 2
⊢
(∀𝑎 ∈
ℕ0 ((#b‘𝑎) = 𝑦 → 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) |
10 | | elnn0 11171 |
. . . . . 6
⊢ (𝑎 ∈ ℕ0
↔ (𝑎 ∈ ℕ
∨ 𝑎 =
0)) |
11 | | nn0sumshdiglemA 42211 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧
𝑦 ∈ ℕ) →
(∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
12 | 11 | expimpd 627 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) →
((𝑦 ∈ ℕ ∧
∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
13 | | nn0sumshdiglemB 42212 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈
ℕ0) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
14 | 13 | expimpd 627 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈
ℕ0) → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
15 | | nneom 42115 |
. . . . . . . 8
⊢ (𝑎 ∈ ℕ → ((𝑎 / 2) ∈ ℕ ∨
((𝑎 − 1) / 2) ∈
ℕ0)) |
16 | 12, 14, 15 | mpjaodan 823 |
. . . . . . 7
⊢ (𝑎 ∈ ℕ → ((𝑦 ∈ ℕ ∧
∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
17 | | eqcom 2617 |
. . . . . . . . . . . . . 14
⊢ (1 =
(𝑦 + 1) ↔ (𝑦 + 1) = 1) |
18 | 17 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → (1 =
(𝑦 + 1) ↔ (𝑦 + 1) = 1)) |
19 | | nncn 10905 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
20 | | 1cnd 9935 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → 1 ∈
ℂ) |
21 | 19, 20, 20 | addlsub 10326 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ↔ 𝑦 = (1 −
1))) |
22 | | 1m1e0 10966 |
. . . . . . . . . . . . . . 15
⊢ (1
− 1) = 0 |
23 | 22 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → (1
− 1) = 0) |
24 | 23 | eqeq2d 2620 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → (𝑦 = (1 − 1) ↔ 𝑦 = 0)) |
25 | 18, 21, 24 | 3bitrd 293 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → (1 =
(𝑦 + 1) ↔ 𝑦 = 0)) |
26 | | oveq1 6556 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 0 → (𝑦 + 1) = (0 + 1)) |
27 | 26 | oveq2d 6565 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 0 → (0..^(𝑦 + 1)) = (0..^(0 +
1))) |
28 | | 0p1e1 11009 |
. . . . . . . . . . . . . . . . 17
⊢ (0 + 1) =
1 |
29 | 28 | oveq2i 6560 |
. . . . . . . . . . . . . . . 16
⊢ (0..^(0 +
1)) = (0..^1) |
30 | | fzo01 12417 |
. . . . . . . . . . . . . . . 16
⊢ (0..^1) =
{0} |
31 | 29, 30 | eqtri 2632 |
. . . . . . . . . . . . . . 15
⊢ (0..^(0 +
1)) = {0} |
32 | 27, 31 | syl6eq 2660 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 0 → (0..^(𝑦 + 1)) = {0}) |
33 | 32 | sumeq1d 14279 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘))) |
34 | | 0cn 9911 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℂ |
35 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (𝑘(digit‘2)0) =
(0(digit‘2)0)) |
36 | | 2nn 11062 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℕ |
37 | | 0z 11265 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℤ |
38 | | dig0 42198 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2
∈ ℕ ∧ 0 ∈ ℤ) → (0(digit‘2)0) =
0) |
39 | 36, 37, 38 | mp2an 704 |
. . . . . . . . . . . . . . . . . 18
⊢
(0(digit‘2)0) = 0 |
40 | 35, 39 | syl6eq 2660 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝑘(digit‘2)0) = 0) |
41 | | oveq2 6557 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (2↑𝑘) = (2↑0)) |
42 | | 2cn 10968 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℂ |
43 | | exp0 12726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ∈
ℂ → (2↑0) = 1) |
44 | 42, 43 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(2↑0) = 1 |
45 | 41, 44 | syl6eq 2660 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (2↑𝑘) = 1) |
46 | 40, 45 | oveq12d 6567 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = (0 ·
1)) |
47 | | 1re 9918 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
48 | | mul02lem2 10092 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
ℝ → (0 · 1) = 0) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (0
· 1) = 0 |
50 | 46, 49 | syl6eq 2660 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → ((𝑘(digit‘2)0) · (2↑𝑘)) = 0) |
51 | 50 | sumsn 14319 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℂ ∧ 0 ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)0) · (2↑𝑘)) = 0) |
52 | 34, 34, 51 | mp2an 704 |
. . . . . . . . . . . . 13
⊢
Σ𝑘 ∈ {0}
((𝑘(digit‘2)0)
· (2↑𝑘)) =
0 |
53 | 33, 52 | syl6req 2661 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0 → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))) |
54 | 25, 53 | syl6bi 242 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → (1 =
(𝑦 + 1) → 0 =
Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))) |
55 | 54 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))) |
56 | | fveq2 6103 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 0 →
(#b‘𝑎) =
(#b‘0)) |
57 | | blen0 42164 |
. . . . . . . . . . . . . 14
⊢
(#b‘0) = 1 |
58 | 56, 57 | syl6eq 2660 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 0 →
(#b‘𝑎) =
1) |
59 | 58 | eqeq1d 2612 |
. . . . . . . . . . . 12
⊢ (𝑎 = 0 →
((#b‘𝑎) =
(𝑦 + 1) ↔ 1 = (𝑦 + 1))) |
60 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 0 → 𝑎 = 0) |
61 | | oveq2 6557 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 0 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)0)) |
62 | 61 | oveq1d 6564 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)0) · (2↑𝑘))) |
63 | 62 | sumeq2sdv 14282 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 0 → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))) |
64 | 60, 63 | eqeq12d 2625 |
. . . . . . . . . . . 12
⊢ (𝑎 = 0 → (𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘)))) |
65 | 59, 64 | imbi12d 333 |
. . . . . . . . . . 11
⊢ (𝑎 = 0 →
(((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))) |
66 | 65 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) →
(((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ (1 = (𝑦 + 1) → 0 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)0) · (2↑𝑘))))) |
67 | 55, 66 | mpbird 246 |
. . . . . . . . 9
⊢ ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) →
((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))) |
68 | 67 | a1d 25 |
. . . . . . . 8
⊢ ((𝑎 = 0 ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
69 | 68 | expimpd 627 |
. . . . . . 7
⊢ (𝑎 = 0 → ((𝑦 ∈ ℕ ∧ ∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
70 | 16, 69 | jaoi 393 |
. . . . . 6
⊢ ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → ((𝑦 ∈ ℕ ∧
∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
71 | 10, 70 | sylbi 206 |
. . . . 5
⊢ (𝑎 ∈ ℕ0
→ ((𝑦 ∈ ℕ
∧ ∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
72 | 71 | com12 32 |
. . . 4
⊢ ((𝑦 ∈ ℕ ∧
∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → (𝑎 ∈ ℕ0 →
((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
73 | 72 | ralrimiv 2948 |
. . 3
⊢ ((𝑦 ∈ ℕ ∧
∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ∀𝑎 ∈ ℕ0
((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))) |
74 | 73 | ex 449 |
. 2
⊢ (𝑦 ∈ ℕ →
(∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0
((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
75 | 9, 74 | syl5bi 231 |
1
⊢ (𝑦 ∈ ℕ →
(∀𝑎 ∈
ℕ0 ((#b‘𝑎) = 𝑦 → 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0
((#b‘𝑎) =
(𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |