Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmval Structured version   Visualization version   GIF version

Theorem nmval 22204
 Description: The value of the norm function. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n 𝑁 = (norm‘𝑊)
nmfval.x 𝑋 = (Base‘𝑊)
nmfval.z 0 = (0g𝑊)
nmfval.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
nmval (𝐴𝑋 → (𝑁𝐴) = (𝐴𝐷 0 ))

Proof of Theorem nmval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . 2 (𝑥 = 𝐴 → (𝑥𝐷 0 ) = (𝐴𝐷 0 ))
2 nmfval.n . . 3 𝑁 = (norm‘𝑊)
3 nmfval.x . . 3 𝑋 = (Base‘𝑊)
4 nmfval.z . . 3 0 = (0g𝑊)
5 nmfval.d . . 3 𝐷 = (dist‘𝑊)
62, 3, 4, 5nmfval 22203 . 2 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
7 ovex 6577 . 2 (𝐴𝐷 0 ) ∈ V
81, 6, 7fvmpt 6191 1 (𝐴𝑋 → (𝑁𝐴) = (𝐴𝐷 0 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  0gc0g 15923  normcnm 22191 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-nm 22197 This theorem is referenced by:  nmval2  22206  ngpds2  22220  isngp4  22226  nmge0  22231  nmeq0  22232  nminv  22235  nmmtri  22236  nmrtri  22238
 Copyright terms: Public domain W3C validator