MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmrtri Structured version   Visualization version   GIF version

Theorem nmrtri 22238
Description: Reverse triangle inequality for the norm of a subtraction. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmf.x 𝑋 = (Base‘𝐺)
nmf.n 𝑁 = (norm‘𝐺)
nmmtri.m = (-g𝐺)
Assertion
Ref Expression
nmrtri ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴 𝐵)))

Proof of Theorem nmrtri
StepHypRef Expression
1 ngpms 22214 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
213ad2ant1 1075 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐺 ∈ MetSp)
3 simp2 1055 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
4 simp3 1056 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
5 ngpgrp 22213 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
653ad2ant1 1075 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → 𝐺 ∈ Grp)
7 nmf.x . . . . 5 𝑋 = (Base‘𝐺)
8 eqid 2610 . . . . 5 (0g𝐺) = (0g𝐺)
97, 8grpidcl 17273 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
106, 9syl 17 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (0g𝐺) ∈ 𝑋)
11 eqid 2610 . . . 4 (dist‘𝐺) = (dist‘𝐺)
127, 11msrtri 22087 . . 3 ((𝐺 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋 ∧ (0g𝐺) ∈ 𝑋)) → (abs‘((𝐴(dist‘𝐺)(0g𝐺)) − (𝐵(dist‘𝐺)(0g𝐺)))) ≤ (𝐴(dist‘𝐺)𝐵))
132, 3, 4, 10, 12syl13anc 1320 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝐴(dist‘𝐺)(0g𝐺)) − (𝐵(dist‘𝐺)(0g𝐺)))) ≤ (𝐴(dist‘𝐺)𝐵))
14 nmf.n . . . . . 6 𝑁 = (norm‘𝐺)
1514, 7, 8, 11nmval 22204 . . . . 5 (𝐴𝑋 → (𝑁𝐴) = (𝐴(dist‘𝐺)(0g𝐺)))
16153ad2ant2 1076 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) = (𝐴(dist‘𝐺)(0g𝐺)))
1714, 7, 8, 11nmval 22204 . . . . 5 (𝐵𝑋 → (𝑁𝐵) = (𝐵(dist‘𝐺)(0g𝐺)))
18173ad2ant3 1077 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) = (𝐵(dist‘𝐺)(0g𝐺)))
1916, 18oveq12d 6567 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) = ((𝐴(dist‘𝐺)(0g𝐺)) − (𝐵(dist‘𝐺)(0g𝐺))))
2019fveq2d 6107 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) = (abs‘((𝐴(dist‘𝐺)(0g𝐺)) − (𝐵(dist‘𝐺)(0g𝐺)))))
21 nmmtri.m . . . 4 = (-g𝐺)
2214, 7, 21, 11ngpds 22218 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(dist‘𝐺)𝐵) = (𝑁‘(𝐴 𝐵)))
2322eqcomd 2616 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 𝐵)) = (𝐴(dist‘𝐺)𝐵))
2413, 20, 233brtr4d 4615 1 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cle 9954  cmin 10145  abscabs 13822  Basecbs 15695  distcds 15777  0gc0g 15923  Grpcgrp 17245  -gcsg 17247  MetSpcmt 21933  normcnm 22191  NrmGrpcngp 22192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-tset 15787  df-ple 15788  df-ds 15791  df-0g 15925  df-topgen 15927  df-xrs 15985  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198
This theorem is referenced by:  nm2dif  22239
  Copyright terms: Public domain W3C validator