Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmoxr | Structured version Visualization version GIF version |
Description: The norm of an operator is an extended real. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoxr.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoxr.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoxr.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
Ref | Expression |
---|---|
nmoxr | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoxr.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nmoxr.2 | . . 3 ⊢ 𝑌 = (BaseSet‘𝑊) | |
3 | eqid 2610 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
4 | eqid 2610 | . . 3 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
5 | nmoxr.3 | . . 3 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
6 | 1, 2, 3, 4, 5 | nmooval 27002 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) = sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < )) |
7 | 2, 4 | nmosetre 27003 | . . . . 5 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ) |
8 | ressxr 9962 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
9 | 7, 8 | syl6ss 3580 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → {𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ*) |
10 | supxrcl 12017 | . . . 4 ⊢ ({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))} ⊆ ℝ* → sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < ) ∈ ℝ*) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < ) ∈ ℝ*) |
12 | 11 | 3adant1 1072 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 (((normCV‘𝑈)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑊)‘(𝑇‘𝑧)))}, ℝ*, < ) ∈ ℝ*) |
13 | 6, 12 | eqeltrd 2688 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝑁‘𝑇) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 {cab 2596 ∃wrex 2897 ⊆ wss 3540 class class class wbr 4583 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 supcsup 8229 ℝcr 9814 1c1 9816 ℝ*cxr 9952 < clt 9953 ≤ cle 9954 NrmCVeccnv 26823 BaseSetcba 26825 normCVcnmcv 26829 normOpOLD cnmoo 26980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-vc 26798 df-nv 26831 df-va 26834 df-ba 26835 df-sm 26836 df-0v 26837 df-nmcv 26839 df-nmoo 26984 |
This theorem is referenced by: nmooge0 27006 nmoreltpnf 27008 nmobndi 27014 nmblore 27025 nmlnogt0 27036 isblo3i 27040 ubthlem3 27112 |
Copyright terms: Public domain | W3C validator |