Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmosetn0 | Structured version Visualization version GIF version |
Description: The set in the supremum of the operator norm definition df-nmoo 26984 is nonempty. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmosetn0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmosetn0.5 | ⊢ 𝑍 = (0vec‘𝑈) |
nmosetn0.4 | ⊢ 𝑀 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nmosetn0 | ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmosetn0.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nmosetn0.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
3 | 1, 2 | nvzcl 26873 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
4 | nmosetn0.4 | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑈) | |
5 | 2, 4 | nvz0 26907 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑀‘𝑍) = 0) |
6 | 0le1 10430 | . . . . 5 ⊢ 0 ≤ 1 | |
7 | 5, 6 | syl6eqbr 4622 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → (𝑀‘𝑍) ≤ 1) |
8 | eqid 2610 | . . . 4 ⊢ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)) | |
9 | 7, 8 | jctir 559 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) |
10 | fveq2 6103 | . . . . . 6 ⊢ (𝑦 = 𝑍 → (𝑀‘𝑦) = (𝑀‘𝑍)) | |
11 | 10 | breq1d 4593 | . . . . 5 ⊢ (𝑦 = 𝑍 → ((𝑀‘𝑦) ≤ 1 ↔ (𝑀‘𝑍) ≤ 1)) |
12 | fveq2 6103 | . . . . . . 7 ⊢ (𝑦 = 𝑍 → (𝑇‘𝑦) = (𝑇‘𝑍)) | |
13 | 12 | fveq2d 6107 | . . . . . 6 ⊢ (𝑦 = 𝑍 → (𝑁‘(𝑇‘𝑦)) = (𝑁‘(𝑇‘𝑍))) |
14 | 13 | eqeq2d 2620 | . . . . 5 ⊢ (𝑦 = 𝑍 → ((𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)) ↔ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) |
15 | 11, 14 | anbi12d 743 | . . . 4 ⊢ (𝑦 = 𝑍 → (((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))) ↔ ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍))))) |
16 | 15 | rspcev 3282 | . . 3 ⊢ ((𝑍 ∈ 𝑋 ∧ ((𝑀‘𝑍) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑍)))) → ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
17 | 3, 9, 16 | syl2anc 691 | . 2 ⊢ (𝑈 ∈ NrmCVec → ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
18 | fvex 6113 | . . 3 ⊢ (𝑁‘(𝑇‘𝑍)) ∈ V | |
19 | eqeq1 2614 | . . . . 5 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (𝑥 = (𝑁‘(𝑇‘𝑦)) ↔ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) | |
20 | 19 | anbi2d 736 | . . . 4 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦))) ↔ ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))))) |
21 | 20 | rexbidv 3034 | . . 3 ⊢ (𝑥 = (𝑁‘(𝑇‘𝑍)) → (∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦))))) |
22 | 18, 21 | elab 3319 | . 2 ⊢ ((𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ (𝑁‘(𝑇‘𝑍)) = (𝑁‘(𝑇‘𝑦)))) |
23 | 17, 22 | sylibr 223 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘(𝑇‘𝑍)) ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 ((𝑀‘𝑦) ≤ 1 ∧ 𝑥 = (𝑁‘(𝑇‘𝑦)))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {cab 2596 ∃wrex 2897 class class class wbr 4583 ‘cfv 5804 0cc0 9815 1c1 9816 ≤ cle 9954 NrmCVeccnv 26823 BaseSetcba 26825 0veccn0v 26827 normCVcnmcv 26829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-grpo 26731 df-gid 26732 df-ginv 26733 df-ablo 26783 df-vc 26798 df-nv 26831 df-va 26834 df-ba 26835 df-sm 26836 df-0v 26837 df-nmcv 26839 |
This theorem is referenced by: nmooge0 27006 nmorepnf 27007 |
Copyright terms: Public domain | W3C validator |