MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoix Structured version   Visualization version   GIF version

Theorem nmoix 22343
Description: The operator norm is a bound on the size of an operator, even when it is infinite (using extended real multiplication). (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmoi.2 𝑉 = (Base‘𝑆)
nmoi.3 𝐿 = (norm‘𝑆)
nmoi.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmoix (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))

Proof of Theorem nmoix
StepHypRef Expression
1 nmofval.1 . . . . . . 7 𝑁 = (𝑆 normOp 𝑇)
21isnghm2 22338 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑆 NGHom 𝑇) ↔ (𝑁𝐹) ∈ ℝ))
32biimpar 501 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) → 𝐹 ∈ (𝑆 NGHom 𝑇))
4 nmoi.2 . . . . . 6 𝑉 = (Base‘𝑆)
5 nmoi.3 . . . . . 6 𝐿 = (norm‘𝑆)
6 nmoi.4 . . . . . 6 𝑀 = (norm‘𝑇)
71, 4, 5, 6nmoi 22342 . . . . 5 ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
83, 7sylan 487 . . . 4 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁𝐹) ∈ ℝ) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
98an32s 842 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) · (𝐿𝑋)))
10 id 22 . . . 4 ((𝑁𝐹) ∈ ℝ → (𝑁𝐹) ∈ ℝ)
114, 5nmcl 22230 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) → (𝐿𝑋) ∈ ℝ)
12113ad2antl1 1216 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐿𝑋) ∈ ℝ)
13 rexmul 11973 . . . 4 (((𝑁𝐹) ∈ ℝ ∧ (𝐿𝑋) ∈ ℝ) → ((𝑁𝐹) ·e (𝐿𝑋)) = ((𝑁𝐹) · (𝐿𝑋)))
1410, 12, 13syl2anr 494 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → ((𝑁𝐹) ·e (𝐿𝑋)) = ((𝑁𝐹) · (𝐿𝑋)))
159, 14breqtrrd 4611 . 2 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) ∈ ℝ) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
16 fveq2 6103 . . . . . . 7 (𝑋 = (0g𝑆) → (𝐹𝑋) = (𝐹‘(0g𝑆)))
1716fveq2d 6107 . . . . . 6 (𝑋 = (0g𝑆) → (𝑀‘(𝐹𝑋)) = (𝑀‘(𝐹‘(0g𝑆))))
18 fveq2 6103 . . . . . . 7 (𝑋 = (0g𝑆) → (𝐿𝑋) = (𝐿‘(0g𝑆)))
1918oveq2d 6565 . . . . . 6 (𝑋 = (0g𝑆) → (+∞ ·e (𝐿𝑋)) = (+∞ ·e (𝐿‘(0g𝑆))))
2017, 19breq12d 4596 . . . . 5 (𝑋 = (0g𝑆) → ((𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)) ↔ (𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆)))))
21 simpl2 1058 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝑇 ∈ NrmGrp)
22 eqid 2610 . . . . . . . . . . . . 13 (Base‘𝑇) = (Base‘𝑇)
234, 22ghmf 17487 . . . . . . . . . . . 12 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
2423ffvelrnda 6267 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
25243ad2antl3 1218 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Base‘𝑇))
2622, 6nmcl 22230 . . . . . . . . . 10 ((𝑇 ∈ NrmGrp ∧ (𝐹𝑋) ∈ (Base‘𝑇)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2721, 25, 26syl2anc 691 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2827adantr 480 . . . . . . . 8 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ)
2928rexrd 9968 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ∈ ℝ*)
30 pnfge 11840 . . . . . . 7 ((𝑀‘(𝐹𝑋)) ∈ ℝ* → (𝑀‘(𝐹𝑋)) ≤ +∞)
3129, 30syl 17 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ +∞)
32 simp1 1054 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 𝑆 ∈ NrmGrp)
33 eqid 2610 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
344, 5, 33nmrpcl 22234 . . . . . . . . 9 ((𝑆 ∈ NrmGrp ∧ 𝑋𝑉𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
35343expa 1257 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
3632, 35sylanl1 680 . . . . . . 7 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝐿𝑋) ∈ ℝ+)
37 rpxr 11716 . . . . . . . 8 ((𝐿𝑋) ∈ ℝ+ → (𝐿𝑋) ∈ ℝ*)
38 rpgt0 11720 . . . . . . . 8 ((𝐿𝑋) ∈ ℝ+ → 0 < (𝐿𝑋))
39 xmulpnf2 11977 . . . . . . . 8 (((𝐿𝑋) ∈ ℝ* ∧ 0 < (𝐿𝑋)) → (+∞ ·e (𝐿𝑋)) = +∞)
4037, 38, 39syl2anc 691 . . . . . . 7 ((𝐿𝑋) ∈ ℝ+ → (+∞ ·e (𝐿𝑋)) = +∞)
4136, 40syl 17 . . . . . 6 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (+∞ ·e (𝐿𝑋)) = +∞)
4231, 41breqtrrd 4611 . . . . 5 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ 𝑋 ≠ (0g𝑆)) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
43 0le0 10987 . . . . . 6 0 ≤ 0
44 simpl3 1059 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
45 eqid 2610 . . . . . . . . . . 11 (0g𝑇) = (0g𝑇)
4633, 45ghmid 17489 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
4744, 46syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐹‘(0g𝑆)) = (0g𝑇))
4847fveq2d 6107 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = (𝑀‘(0g𝑇)))
496, 45nm0 22243 . . . . . . . . 9 (𝑇 ∈ NrmGrp → (𝑀‘(0g𝑇)) = 0)
5021, 49syl 17 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(0g𝑇)) = 0)
5148, 50eqtrd 2644 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) = 0)
52 simpl1 1057 . . . . . . . . . 10 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → 𝑆 ∈ NrmGrp)
535, 33nm0 22243 . . . . . . . . . 10 (𝑆 ∈ NrmGrp → (𝐿‘(0g𝑆)) = 0)
5452, 53syl 17 . . . . . . . . 9 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝐿‘(0g𝑆)) = 0)
5554oveq2d 6565 . . . . . . . 8 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (+∞ ·e (𝐿‘(0g𝑆))) = (+∞ ·e 0))
56 pnfxr 9971 . . . . . . . . 9 +∞ ∈ ℝ*
57 xmul01 11969 . . . . . . . . 9 (+∞ ∈ ℝ* → (+∞ ·e 0) = 0)
5856, 57ax-mp 5 . . . . . . . 8 (+∞ ·e 0) = 0
5955, 58syl6eq 2660 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (+∞ ·e (𝐿‘(0g𝑆))) = 0)
6051, 59breq12d 4596 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → ((𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆))) ↔ 0 ≤ 0))
6143, 60mpbiri 247 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹‘(0g𝑆))) ≤ (+∞ ·e (𝐿‘(0g𝑆))))
6220, 42, 61pm2.61ne 2867 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
6362adantr 480 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑀‘(𝐹𝑋)) ≤ (+∞ ·e (𝐿𝑋)))
64 simpr 476 . . . 4 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑁𝐹) = +∞)
6564oveq1d 6564 . . 3 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → ((𝑁𝐹) ·e (𝐿𝑋)) = (+∞ ·e (𝐿𝑋)))
6663, 65breqtrrd 4611 . 2 ((((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) ∧ (𝑁𝐹) = +∞) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
671nmocl 22334 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ∈ ℝ*)
681nmoge0 22335 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁𝐹))
69 ge0nemnf 11878 . . . . . 6 (((𝑁𝐹) ∈ ℝ* ∧ 0 ≤ (𝑁𝐹)) → (𝑁𝐹) ≠ -∞)
7067, 68, 69syl2anc 691 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) ≠ -∞)
7167, 70jca 553 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) ∈ ℝ* ∧ (𝑁𝐹) ≠ -∞))
72 xrnemnf 11827 . . . 4 (((𝑁𝐹) ∈ ℝ* ∧ (𝑁𝐹) ≠ -∞) ↔ ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7371, 72sylib 207 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7473adantr 480 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → ((𝑁𝐹) ∈ ℝ ∨ (𝑁𝐹) = +∞))
7515, 66, 74mpjaodan 823 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑋𝑉) → (𝑀‘(𝐹𝑋)) ≤ ((𝑁𝐹) ·e (𝐿𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815   · cmul 9820  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  +crp 11708   ·e cxmu 11821  Basecbs 15695  0gc0g 15923   GrpHom cghm 17480  normcnm 22191  NrmGrpcngp 22192   normOp cnmo 22319   NGHom cnghm 22320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-0g 15925  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-ghm 17481  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-nmo 22322  df-nghm 22323
This theorem is referenced by:  nmoi2  22344  nmoleub2lem  22722
  Copyright terms: Public domain W3C validator