Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlno0lem Structured version   Visualization version   GIF version

Theorem nmlno0lem 27032
 Description: Lemma for nmlno0i 27033. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlno0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlno0.0 𝑍 = (𝑈 0op 𝑊)
nmlno0.7 𝐿 = (𝑈 LnOp 𝑊)
nmlno0lem.u 𝑈 ∈ NrmCVec
nmlno0lem.w 𝑊 ∈ NrmCVec
nmlno0lem.l 𝑇𝐿
nmlno0lem.1 𝑋 = (BaseSet‘𝑈)
nmlno0lem.2 𝑌 = (BaseSet‘𝑊)
nmlno0lem.r 𝑅 = ( ·𝑠OLD𝑈)
nmlno0lem.s 𝑆 = ( ·𝑠OLD𝑊)
nmlno0lem.p 𝑃 = (0vec𝑈)
nmlno0lem.q 𝑄 = (0vec𝑊)
nmlno0lem.k 𝐾 = (normCV𝑈)
nmlno0lem.m 𝑀 = (normCV𝑊)
Assertion
Ref Expression
nmlno0lem ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)

Proof of Theorem nmlno0lem
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmlno0lem.u . . . . . . . . . . . . . . 15 𝑈 ∈ NrmCVec
2 nmlno0lem.1 . . . . . . . . . . . . . . . 16 𝑋 = (BaseSet‘𝑈)
3 nmlno0lem.k . . . . . . . . . . . . . . . 16 𝐾 = (normCV𝑈)
42, 3nvcl 26900 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝐾𝑥) ∈ ℝ)
51, 4mpan 702 . . . . . . . . . . . . . 14 (𝑥𝑋 → (𝐾𝑥) ∈ ℝ)
65recnd 9947 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝐾𝑥) ∈ ℂ)
76adantr 480 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾𝑥) ∈ ℂ)
8 nmlno0lem.p . . . . . . . . . . . . . . . . 17 𝑃 = (0vec𝑈)
92, 8, 3nvz 26908 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((𝐾𝑥) = 0 ↔ 𝑥 = 𝑃))
101, 9mpan 702 . . . . . . . . . . . . . . 15 (𝑥𝑋 → ((𝐾𝑥) = 0 ↔ 𝑥 = 𝑃))
11 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑃 → (𝑇𝑥) = (𝑇𝑃))
12 nmlno0lem.w . . . . . . . . . . . . . . . . 17 𝑊 ∈ NrmCVec
13 nmlno0lem.l . . . . . . . . . . . . . . . . 17 𝑇𝐿
14 nmlno0lem.2 . . . . . . . . . . . . . . . . . 18 𝑌 = (BaseSet‘𝑊)
15 nmlno0lem.q . . . . . . . . . . . . . . . . . 18 𝑄 = (0vec𝑊)
16 nmlno0.7 . . . . . . . . . . . . . . . . . 18 𝐿 = (𝑈 LnOp 𝑊)
172, 14, 8, 15, 16lno0 26995 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑃) = 𝑄)
181, 12, 13, 17mp3an 1416 . . . . . . . . . . . . . . . 16 (𝑇𝑃) = 𝑄
1911, 18syl6eq 2660 . . . . . . . . . . . . . . 15 (𝑥 = 𝑃 → (𝑇𝑥) = 𝑄)
2010, 19syl6bi 242 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝐾𝑥) = 0 → (𝑇𝑥) = 𝑄))
2120necon3d 2803 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝑇𝑥) ≠ 𝑄 → (𝐾𝑥) ≠ 0))
2221imp 444 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾𝑥) ≠ 0)
237, 22recne0d 10674 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (1 / (𝐾𝑥)) ≠ 0)
24 simpr 476 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇𝑥) ≠ 𝑄)
257, 22reccld 10673 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (1 / (𝐾𝑥)) ∈ ℂ)
262, 14, 16lnof 26994 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
271, 12, 13, 26mp3an 1416 . . . . . . . . . . . . . . . 16 𝑇:𝑋𝑌
2827ffvelrni 6266 . . . . . . . . . . . . . . 15 (𝑥𝑋 → (𝑇𝑥) ∈ 𝑌)
2928adantr 480 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇𝑥) ∈ 𝑌)
30 nmlno0lem.s . . . . . . . . . . . . . . . 16 𝑆 = ( ·𝑠OLD𝑊)
3114, 30, 15nvmul0or 26889 . . . . . . . . . . . . . . 15 ((𝑊 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3212, 31mp3an1 1403 . . . . . . . . . . . . . 14 (((1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3325, 29, 32syl2anc 691 . . . . . . . . . . . . 13 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3433necon3abid 2818 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ ¬ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
35 neanior 2874 . . . . . . . . . . . 12 (((1 / (𝐾𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 𝑄) ↔ ¬ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄))
3634, 35syl6bbr 277 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ ((1 / (𝐾𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 𝑄)))
3723, 24, 36mpbir2and 959 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄)
3814, 30nvscl 26865 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
3912, 38mp3an1 1403 . . . . . . . . . . . 12 (((1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
4025, 29, 39syl2anc 691 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
41 nmlno0lem.m . . . . . . . . . . . 12 𝑀 = (normCV𝑊)
4214, 15, 41nvgt0 26913 . . . . . . . . . . 11 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4312, 40, 42sylancr 694 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4437, 43mpbid 221 . . . . . . . . 9 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))))
4544ex 449 . . . . . . . 8 (𝑥𝑋 → ((𝑇𝑥) ≠ 𝑄 → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4645adantl 481 . . . . . . 7 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ((𝑇𝑥) ≠ 𝑄 → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4714, 41nmosetre 27003 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ)
4812, 27, 47mp2an 704 . . . . . . . . . . . . 13 {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ
49 ressxr 9962 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
5048, 49sstri 3577 . . . . . . . . . . . 12 {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ*
51 simpl 472 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → 𝑥𝑋)
52 nmlno0lem.r . . . . . . . . . . . . . . . . 17 𝑅 = ( ·𝑠OLD𝑈)
532, 52nvscl 26865 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
541, 53mp3an1 1403 . . . . . . . . . . . . . . 15 (((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
5525, 51, 54syl2anc 691 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
5619necon3i 2814 . . . . . . . . . . . . . . . . 17 ((𝑇𝑥) ≠ 𝑄𝑥𝑃)
572, 52, 8, 3nv1 26914 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑥𝑃) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
581, 57mp3an1 1403 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑥𝑃) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
5956, 58sylan2 490 . . . . . . . . . . . . . . . 16 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
60 1re 9918 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
6159, 60syl6eqel 2696 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ∈ ℝ)
62 eqle 10018 . . . . . . . . . . . . . . 15 (((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ∈ ℝ ∧ (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1)
6361, 59, 62syl2anc 691 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1)
641, 12, 133pm3.2i 1232 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿)
652, 52, 30, 16lnomul 26999 . . . . . . . . . . . . . . . . . 18 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ ((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋)) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6664, 65mpan 702 . . . . . . . . . . . . . . . . 17 (((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6725, 51, 66syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6867eqcomd 2616 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)))
6968fveq2d 6107 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))
70 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (𝐾𝑧) = (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)))
7170breq1d 4593 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → ((𝐾𝑧) ≤ 1 ↔ (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1))
72 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (𝑇𝑧) = (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)))
7372fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (𝑀‘(𝑇𝑧)) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))
7473eqeq2d 2620 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)) ↔ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥)))))
7571, 74anbi12d 743 . . . . . . . . . . . . . . 15 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))) ↔ ((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))))
7675rspcev 3282 . . . . . . . . . . . . . 14 ((((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋 ∧ ((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))) → ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
7755, 63, 69, 76syl12anc 1316 . . . . . . . . . . . . 13 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
78 fvex 6113 . . . . . . . . . . . . . 14 (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ V
79 eqeq1 2614 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (𝑦 = (𝑀‘(𝑇𝑧)) ↔ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
8079anbi2d 736 . . . . . . . . . . . . . . 15 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧))) ↔ ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)))))
8180rexbidv 3034 . . . . . . . . . . . . . 14 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧))) ↔ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)))))
8278, 81elab 3319 . . . . . . . . . . . . 13 ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ↔ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
8377, 82sylibr 223 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))})
84 supxrub 12026 . . . . . . . . . . . 12 (({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ* ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
8550, 83, 84sylancr 694 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
8685adantll 746 . . . . . . . . . 10 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
87 nmlno0.3 . . . . . . . . . . . . . . 15 𝑁 = (𝑈 normOpOLD 𝑊)
882, 14, 3, 41, 87nmooval 27002 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
891, 12, 27, 88mp3an 1416 . . . . . . . . . . . . 13 (𝑁𝑇) = sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < )
9089eqeq1i 2615 . . . . . . . . . . . 12 ((𝑁𝑇) = 0 ↔ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9190biimpi 205 . . . . . . . . . . 11 ((𝑁𝑇) = 0 → sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9291ad2antrr 758 . . . . . . . . . 10 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9386, 92breqtrd 4609 . . . . . . . . 9 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0)
9414, 41nvcl 26900 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ)
9512, 40, 94sylancr 694 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ)
96 0re 9919 . . . . . . . . . . 11 0 ∈ ℝ
97 lenlt 9995 . . . . . . . . . . 11 (((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9895, 96, 97sylancl 693 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9998adantll 746 . . . . . . . . 9 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
10093, 99mpbid 221 . . . . . . . 8 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))))
101100ex 449 . . . . . . 7 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ((𝑇𝑥) ≠ 𝑄 → ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
10246, 101pm2.65d 186 . . . . . 6 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ¬ (𝑇𝑥) ≠ 𝑄)
103 nne 2786 . . . . . 6 (¬ (𝑇𝑥) ≠ 𝑄 ↔ (𝑇𝑥) = 𝑄)
104102, 103sylib 207 . . . . 5 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑇𝑥) = 𝑄)
105 nmlno0.0 . . . . . . . 8 𝑍 = (𝑈 0op 𝑊)
1062, 15, 1050oval 27027 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑥𝑋) → (𝑍𝑥) = 𝑄)
1071, 12, 106mp3an12 1406 . . . . . 6 (𝑥𝑋 → (𝑍𝑥) = 𝑄)
108107adantl 481 . . . . 5 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑍𝑥) = 𝑄)
109104, 108eqtr4d 2647 . . . 4 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑇𝑥) = (𝑍𝑥))
110109ralrimiva 2949 . . 3 ((𝑁𝑇) = 0 → ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥))
111 ffn 5958 . . . . 5 (𝑇:𝑋𝑌𝑇 Fn 𝑋)
11227, 111ax-mp 5 . . . 4 𝑇 Fn 𝑋
1132, 14, 1050oo 27028 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)
1141, 12, 113mp2an 704 . . . . 5 𝑍:𝑋𝑌
115 ffn 5958 . . . . 5 (𝑍:𝑋𝑌𝑍 Fn 𝑋)
116114, 115ax-mp 5 . . . 4 𝑍 Fn 𝑋
117 eqfnfv 6219 . . . 4 ((𝑇 Fn 𝑋𝑍 Fn 𝑋) → (𝑇 = 𝑍 ↔ ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥)))
118112, 116, 117mp2an 704 . . 3 (𝑇 = 𝑍 ↔ ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥))
119110, 118sylibr 223 . 2 ((𝑁𝑇) = 0 → 𝑇 = 𝑍)
120 fveq2 6103 . . 3 (𝑇 = 𝑍 → (𝑁𝑇) = (𝑁𝑍))
12187, 105nmoo0 27030 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)
1221, 12, 121mp2an 704 . . 3 (𝑁𝑍) = 0
123120, 122syl6eq 2660 . 2 (𝑇 = 𝑍 → (𝑁𝑇) = 0)
124119, 123impbii 198 1 ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {cab 2596   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540   class class class wbr 4583   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  supcsup 8229  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   / cdiv 10563  NrmCVeccnv 26823  BaseSetcba 26825   ·𝑠OLD cns 26826  0veccn0v 26827  normCVcnmcv 26829   LnOp clno 26979   normOpOLD cnmoo 26980   0op c0o 26982 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-grpo 26731  df-gid 26732  df-ginv 26733  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-lno 26983  df-nmoo 26984  df-0o 26986 This theorem is referenced by:  nmlno0i  27033
 Copyright terms: Public domain W3C validator