Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnge0 Structured version   Visualization version   GIF version

Theorem nmfnge0 28170
 Description: The norm of any Hilbert space functional is nonnegative. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnge0 (𝑇: ℋ⟶ℂ → 0 ≤ (normfn𝑇))

Proof of Theorem nmfnge0
StepHypRef Expression
1 ax-hv0cl 27244 . . . 4 0 ∈ ℋ
2 ffvelrn 6265 . . . 4 ((𝑇: ℋ⟶ℂ ∧ 0 ∈ ℋ) → (𝑇‘0) ∈ ℂ)
31, 2mpan2 703 . . 3 (𝑇: ℋ⟶ℂ → (𝑇‘0) ∈ ℂ)
43absge0d 14031 . 2 (𝑇: ℋ⟶ℂ → 0 ≤ (abs‘(𝑇‘0)))
5 norm0 27369 . . . 4 (norm‘0) = 0
6 0le1 10430 . . . 4 0 ≤ 1
75, 6eqbrtri 4604 . . 3 (norm‘0) ≤ 1
8 nmfnlb 28167 . . 3 ((𝑇: ℋ⟶ℂ ∧ 0 ∈ ℋ ∧ (norm‘0) ≤ 1) → (abs‘(𝑇‘0)) ≤ (normfn𝑇))
91, 7, 8mp3an23 1408 . 2 (𝑇: ℋ⟶ℂ → (abs‘(𝑇‘0)) ≤ (normfn𝑇))
103abscld 14023 . . . 4 (𝑇: ℋ⟶ℂ → (abs‘(𝑇‘0)) ∈ ℝ)
1110rexrd 9968 . . 3 (𝑇: ℋ⟶ℂ → (abs‘(𝑇‘0)) ∈ ℝ*)
12 nmfnxr 28122 . . 3 (𝑇: ℋ⟶ℂ → (normfn𝑇) ∈ ℝ*)
13 0xr 9965 . . . 4 0 ∈ ℝ*
14 xrletr 11865 . . . 4 ((0 ∈ ℝ* ∧ (abs‘(𝑇‘0)) ∈ ℝ* ∧ (normfn𝑇) ∈ ℝ*) → ((0 ≤ (abs‘(𝑇‘0)) ∧ (abs‘(𝑇‘0)) ≤ (normfn𝑇)) → 0 ≤ (normfn𝑇)))
1513, 14mp3an1 1403 . . 3 (((abs‘(𝑇‘0)) ∈ ℝ* ∧ (normfn𝑇) ∈ ℝ*) → ((0 ≤ (abs‘(𝑇‘0)) ∧ (abs‘(𝑇‘0)) ≤ (normfn𝑇)) → 0 ≤ (normfn𝑇)))
1611, 12, 15syl2anc 691 . 2 (𝑇: ℋ⟶ℂ → ((0 ≤ (abs‘(𝑇‘0)) ∧ (abs‘(𝑇‘0)) ≤ (normfn𝑇)) → 0 ≤ (normfn𝑇)))
174, 9, 16mp2and 711 1 (𝑇: ℋ⟶ℂ → 0 ≤ (normfn𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 1977   class class class wbr 4583  ⟶wf 5800  ‘cfv 5804  ℂcc 9813  0cc0 9815  1c1 9816  ℝ*cxr 9952   ≤ cle 9954  abscabs 13822   ℋchil 27160  normℎcno 27164  0ℎc0v 27165  normfncnmf 27192 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-hilex 27240  ax-hv0cl 27244  ax-hvmul0 27251  ax-hfi 27320  ax-his3 27325 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-hnorm 27209  df-nmfn 28088 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator