MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvcn Structured version   Visualization version   GIF version

Theorem nmcvcn 26934
Description: The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcvcn.1 𝑁 = (normCV𝑈)
nmcvcn.2 𝐶 = (IndMet‘𝑈)
nmcvcn.j 𝐽 = (MetOpen‘𝐶)
nmcvcn.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
nmcvcn (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾))

Proof of Theorem nmcvcn
Dummy variables 𝑒 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 nmcvcn.1 . . 3 𝑁 = (normCV𝑈)
31, 2nvf 26899 . 2 (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶ℝ)
4 simprr 792 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
51, 2nvcl 26900 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁𝑥) ∈ ℝ)
65ex 449 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈) → (𝑁𝑥) ∈ ℝ))
71, 2nvcl 26900 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑁𝑦) ∈ ℝ)
87ex 449 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝑦 ∈ (BaseSet‘𝑈) → (𝑁𝑦) ∈ ℝ))
96, 8anim12d 584 . . . . . . . . . . . 12 (𝑈 ∈ NrmCVec → ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ)))
10 eqid 2610 . . . . . . . . . . . . . 14 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
1110remet 22401 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
12 metcl 21947 . . . . . . . . . . . . 13 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) ∧ (𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
1311, 12mp3an1 1403 . . . . . . . . . . . 12 (((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
149, 13syl6 34 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ))
15143impib 1254 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
16 nmcvcn.2 . . . . . . . . . . . 12 𝐶 = (IndMet‘𝑈)
171, 16imsmet 26930 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
18 metcl 21947 . . . . . . . . . . 11 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) ∈ ℝ)
1917, 18syl3an1 1351 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) ∈ ℝ)
20 eqid 2610 . . . . . . . . . . . 12 ( +𝑣𝑈) = ( +𝑣𝑈)
21 eqid 2610 . . . . . . . . . . . 12 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
221, 20, 21, 2nvabs 26911 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (abs‘((𝑁𝑥) − (𝑁𝑦))) ≤ (𝑁‘(𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
2393impib 1254 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ))
2410remetdval 22400 . . . . . . . . . . . 12 (((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) = (abs‘((𝑁𝑥) − (𝑁𝑦))))
2523, 24syl 17 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) = (abs‘((𝑁𝑥) − (𝑁𝑦))))
261, 20, 21, 2, 16imsdval2 26926 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) = (𝑁‘(𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
2722, 25, 263brtr4d 4615 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦))
2815, 19, 27jca31 555 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)))
29283expa 1257 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)))
30 rpre 11715 . . . . . . . 8 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
31 lelttr 10007 . . . . . . . . . . 11 ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ ∧ 𝑒 ∈ ℝ) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦) ∧ (𝑥𝐶𝑦) < 𝑒) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
32313expa 1257 . . . . . . . . . 10 (((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ 𝑒 ∈ ℝ) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦) ∧ (𝑥𝐶𝑦) < 𝑒) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3332expdimp 452 . . . . . . . . 9 ((((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ 𝑒 ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3433an32s 842 . . . . . . . 8 ((((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)) ∧ 𝑒 ∈ ℝ) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3529, 30, 34syl2an 493 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) ∧ 𝑒 ∈ ℝ+) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3635ex 449 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑒 ∈ ℝ+ → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
3736ralrimdva 2952 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑒 ∈ ℝ+ → ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
3837impr 647 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
39 breq2 4587 . . . . . . 7 (𝑑 = 𝑒 → ((𝑥𝐶𝑦) < 𝑑 ↔ (𝑥𝐶𝑦) < 𝑒))
4039imbi1d 330 . . . . . 6 (𝑑 = 𝑒 → (((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒) ↔ ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
4140ralbidv 2969 . . . . 5 (𝑑 = 𝑒 → (∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒) ↔ ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
4241rspcev 3282 . . . 4 ((𝑒 ∈ ℝ+ ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
434, 38, 42syl2anc 691 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → ∃𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
4443ralrimivva 2954 . 2 (𝑈 ∈ NrmCVec → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
451, 16imsxmet 26931 . . 3 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
4610rexmet 22402 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
47 nmcvcn.j . . . 4 𝐽 = (MetOpen‘𝐶)
48 nmcvcn.k . . . . 5 𝐾 = (topGen‘ran (,))
49 eqid 2610 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
5010, 49tgioo 22407 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
5148, 50eqtri 2632 . . . 4 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
5247, 51metcn 22158 . . 3 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)) → (𝑁 ∈ (𝐽 Cn 𝐾) ↔ (𝑁:(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))))
5345, 46, 52sylancl 693 . 2 (𝑈 ∈ NrmCVec → (𝑁 ∈ (𝐽 Cn 𝐾) ↔ (𝑁:(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))))
543, 44, 53mpbir2and 959 1 (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583   × cxp 5036  ran crn 5039  cres 5040  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816   < clt 9953  cle 9954  cmin 10145  -cneg 10146  +crp 11708  (,)cioo 12046  abscabs 13822  topGenctg 15921  ∞Metcxmt 19552  Metcme 19553  MetOpencmopn 19557   Cn ccn 20838  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  normCVcnmcv 26829  IndMetcims 26830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-cnp 20842  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840
This theorem is referenced by:  nmcnc  26935
  Copyright terms: Public domain W3C validator