MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nltled Structured version   Visualization version   GIF version

Theorem nltled 10066
Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
nltled.1 (𝜑 → ¬ 𝐵 < 𝐴)
Assertion
Ref Expression
nltled (𝜑𝐴𝐵)

Proof of Theorem nltled
StepHypRef Expression
1 nltled.1 . 2 (𝜑 → ¬ 𝐵 < 𝐴)
2 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
42, 3lenltd 10062 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
51, 4mpbird 246 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 1977   class class class wbr 4583  cr 9814   < clt 9953  cle 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-xr 9957  df-le 9959
This theorem is referenced by:  infrelb  10885  1smat1  29198  imo72b2  37497  dvbdfbdioolem2  38819  stoweidlem14  38907  fourierdlem10  39010  fourierdlem12  39012  fourierdlem20  39020  fourierdlem24  39024  fourierdlem50  39049  fourierdlem54  39053  fourierdlem63  39062  fourierdlem65  39064  fourierdlem75  39074  fourierdlem79  39078  fouriersw  39124  etransclem3  39130  etransclem7  39134  etransclem10  39137  etransclem15  39142  etransclem20  39147  etransclem21  39148  etransclem22  39149  etransclem24  39151  etransclem25  39152  etransclem27  39154  etransclem32  39159
  Copyright terms: Public domain W3C validator