MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmdsdir Structured version   Visualization version   GIF version

Theorem nlmdsdir 22296
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nlmdsdi.v 𝑉 = (Base‘𝑊)
nlmdsdi.s · = ( ·𝑠𝑊)
nlmdsdi.f 𝐹 = (Scalar‘𝑊)
nlmdsdi.k 𝐾 = (Base‘𝐹)
nlmdsdi.d 𝐷 = (dist‘𝑊)
nlmdsdir.n 𝑁 = (norm‘𝑊)
nlmdsdir.e 𝐸 = (dist‘𝐹)
Assertion
Ref Expression
nlmdsdir ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)))

Proof of Theorem nlmdsdir
StepHypRef Expression
1 simpl 472 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ NrmMod)
2 nlmdsdi.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
32nlmngp2 22294 . . . . . . 7 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
43adantr 480 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝐹 ∈ NrmGrp)
5 ngpgrp 22213 . . . . . 6 (𝐹 ∈ NrmGrp → 𝐹 ∈ Grp)
64, 5syl 17 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝐹 ∈ Grp)
7 simpr1 1060 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑋𝐾)
8 simpr2 1061 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑌𝐾)
9 nlmdsdi.k . . . . . 6 𝐾 = (Base‘𝐹)
10 eqid 2610 . . . . . 6 (-g𝐹) = (-g𝐹)
119, 10grpsubcl 17318 . . . . 5 ((𝐹 ∈ Grp ∧ 𝑋𝐾𝑌𝐾) → (𝑋(-g𝐹)𝑌) ∈ 𝐾)
126, 7, 8, 11syl3anc 1318 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋(-g𝐹)𝑌) ∈ 𝐾)
13 simpr3 1062 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑍𝑉)
14 nlmdsdi.v . . . . 5 𝑉 = (Base‘𝑊)
15 nlmdsdir.n . . . . 5 𝑁 = (norm‘𝑊)
16 nlmdsdi.s . . . . 5 · = ( ·𝑠𝑊)
17 eqid 2610 . . . . 5 (norm‘𝐹) = (norm‘𝐹)
1814, 15, 16, 2, 9, 17nmvs 22290 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋(-g𝐹)𝑌) ∈ 𝐾𝑍𝑉) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
191, 12, 13, 18syl3anc 1318 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
20 eqid 2610 . . . . 5 (-g𝑊) = (-g𝑊)
21 nlmlmod 22292 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2221adantr 480 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ LMod)
2314, 16, 2, 9, 20, 10, 22, 7, 8, 13lmodsubdir 18744 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋(-g𝐹)𝑌) · 𝑍) = ((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍)))
2423fveq2d 6107 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
2519, 24eqtr3d 2646 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
26 nlmdsdir.e . . . . 5 𝐸 = (dist‘𝐹)
2717, 9, 10, 26ngpds 22218 . . . 4 ((𝐹 ∈ NrmGrp ∧ 𝑋𝐾𝑌𝐾) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)))
284, 7, 8, 27syl3anc 1318 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)))
2928oveq1d 6564 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
30 nlmngp 22291 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
3130adantr 480 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ NrmGrp)
3214, 2, 16, 9lmodvscl 18703 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑍𝑉) → (𝑋 · 𝑍) ∈ 𝑉)
3322, 7, 13, 32syl3anc 1318 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋 · 𝑍) ∈ 𝑉)
3414, 2, 16, 9lmodvscl 18703 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝐾𝑍𝑉) → (𝑌 · 𝑍) ∈ 𝑉)
3522, 8, 13, 34syl3anc 1318 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑌 · 𝑍) ∈ 𝑉)
36 nlmdsdi.d . . . 4 𝐷 = (dist‘𝑊)
3715, 14, 20, 36ngpds 22218 . . 3 ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑍) ∈ 𝑉 ∧ (𝑌 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
3831, 33, 35, 37syl3anc 1318 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
3925, 29, 383eqtr4d 2654 1 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549   · cmul 9820  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  distcds 15777  Grpcgrp 17245  -gcsg 17247  LModclmod 18686  normcnm 22191  NrmGrpcngp 22192  NrmModcnlm 22195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-nrg 22200  df-nlm 22201
This theorem is referenced by:  nlmvscnlem2  22299
  Copyright terms: Public domain W3C validator