Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfunsnaov | Structured version Visualization version GIF version |
Description: If the restriction of a class to a singleton is not a function, its operation value is the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
nfunsnaov | ⊢ (¬ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}) → ((𝐴𝐹𝐵)) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-aov 39847 | . 2 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
2 | nfunsnafv 39871 | . 2 ⊢ (¬ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}) → (𝐹'''〈𝐴, 𝐵〉) = V) | |
3 | 1, 2 | syl5eq 2656 | 1 ⊢ (¬ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}) → ((𝐴𝐹𝐵)) = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1475 Vcvv 3173 {csn 4125 〈cop 4131 ↾ cres 5040 Fun wfun 5798 '''cafv 39843 ((caov 39844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-un 3545 df-if 4037 df-fv 5812 df-dfat 39845 df-afv 39846 df-aov 39847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |