Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfunid Structured version   Visualization version   GIF version

Theorem nfunid 4379
 Description: Deduction version of nfuni 4378. (Contributed by NM, 18-Feb-2013.)
Hypothesis
Ref Expression
nfunid.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfunid (𝜑𝑥 𝐴)

Proof of Theorem nfunid
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 4374 . 2 𝐴 = {𝑦 ∣ ∃𝑧𝐴 𝑦𝑧}
2 nfv 1830 . . 3 𝑦𝜑
3 nfv 1830 . . . 4 𝑧𝜑
4 nfunid.3 . . . 4 (𝜑𝑥𝐴)
5 nfvd 1831 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝑧)
63, 4, 5nfrexd 2989 . . 3 (𝜑 → Ⅎ𝑥𝑧𝐴 𝑦𝑧)
72, 6nfabd 2771 . 2 (𝜑𝑥{𝑦 ∣ ∃𝑧𝐴 𝑦𝑧})
81, 7nfcxfrd 2750 1 (𝜑𝑥 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  {cab 2596  Ⅎwnfc 2738  ∃wrex 2897  ∪ cuni 4372 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-uni 4373 This theorem is referenced by:  dfnfc2  4390  dfnfc2OLD  4391  nfiotad  5771
 Copyright terms: Public domain W3C validator