MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfun Structured version   Visualization version   GIF version

Theorem nfun 3731
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfun.1 𝑥𝐴
nfun.2 𝑥𝐵
Assertion
Ref Expression
nfun 𝑥(𝐴𝐵)

Proof of Theorem nfun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-un 3545 . 2 (𝐴𝐵) = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
2 nfun.1 . . . . 5 𝑥𝐴
32nfcri 2745 . . . 4 𝑥 𝑦𝐴
4 nfun.2 . . . . 5 𝑥𝐵
54nfcri 2745 . . . 4 𝑥 𝑦𝐵
63, 5nfor 1822 . . 3 𝑥(𝑦𝐴𝑦𝐵)
76nfab 2755 . 2 𝑥{𝑦 ∣ (𝑦𝐴𝑦𝐵)}
81, 7nfcxfr 2749 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 382  wcel 1977  {cab 2596  wnfc 2738  cun 3538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-un 3545
This theorem is referenced by:  nfsymdif  3810  csbun  3961  iunxdif3  4542  nfsuc  5713  nfsup  8240  iuncon  21041  ordtconlem1  29298  esumsplit  29442  measvuni  29604  bnj958  30264  bnj1000  30265  bnj1408  30358  bnj1446  30367  bnj1447  30368  bnj1448  30369  bnj1466  30375  bnj1467  30376  poimirlem16  32595  poimirlem19  32598  pimrecltpos  39596
  Copyright terms: Public domain W3C validator