MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nftht0 Structured version   Visualization version   GIF version

Theorem nftht0 1709
Description: Closed form of nfth 1718. (Contributed by Wolf Lammen, 19-Aug-2018.) (Proof shortened by BJ, 16-Sep-2021.)
Assertion
Ref Expression
nftht0 (∀𝑥𝜑 → Ⅎ𝑥𝜑)

Proof of Theorem nftht0
StepHypRef Expression
1 ax-1 6 . 2 (∀𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
2 df-nf 1701 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
31, 2sylibr 223 1 (∀𝑥𝜑 → Ⅎ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  wex 1695  wnf 1699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-nf 1701
This theorem is referenced by:  nfth  1718  nfim1  2055  wl-nfeqfb  32502
  Copyright terms: Public domain W3C validator