MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriOLD Structured version   Visualization version   GIF version

Theorem nfriOLD 2177
Description: Obsolete proof of nf5ri 2053 as of 6-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfriOLD.1 𝑥𝜑
Assertion
Ref Expression
nfriOLD (𝜑 → ∀𝑥𝜑)

Proof of Theorem nfriOLD
StepHypRef Expression
1 nfriOLD.1 . 2 𝑥𝜑
2 nfrOLD 2176 . 2 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
31, 2ax-mp 5 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  wnfOLD 1700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nfOLD 1712
This theorem is referenced by:  alimdOLD  2179  alrimiOLD  2180  eximdOLD  2185  nexdOLD  2186  albidOLD  2187  exbidOLD  2188  19.3OLD  2190  nfim1OLD  2216  hbanOLD  2228  hb3anOLD  2229
  Copyright terms: Public domain W3C validator