Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrexd | Structured version Visualization version GIF version |
Description: Deduction version of nfrex 2990. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfrexd.1 | ⊢ Ⅎ𝑦𝜑 |
nfrexd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfrexd.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfrexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 2979 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) | |
2 | nfrexd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfrexd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | nfrexd.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 4 | nfnd 1769 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
6 | 2, 3, 5 | nfrald 2928 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 ¬ 𝜓) |
7 | 6 | nfnd 1769 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
8 | 1, 7 | nfxfrd 1772 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1699 Ⅎwnfc 2738 ∀wral 2896 ∃wrex 2897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 |
This theorem is referenced by: nfrex 2990 nfunid 4379 nfiund 42219 |
Copyright terms: Public domain | W3C validator |